[スポンサーリンク]

化学者のつぶやき

エナンチオ選択的ジフルオロアルキルブロミド合成

[スポンサーリンク]

ブロモ基の転位を伴うアルケニルブロミドの不斉αジフルオロ化反応が開発された。本反応により生成する含フッ素キラルアルキルブロミドの医農薬品合成への利用が期待される。

ジフルオロメチレン基とアルケンのジフルオロ化反応

ジフルオロメタンは、種々のフルオロメタンの中で最も双極子モーメントが大きい。そのためジフルオロメチレン基の導入により、化合物の極性向上と粘性の低下が期待できる。さらに、ジフルオロメチレン基をもつ化合物は、他の含フッ素化合物と同様に高い代謝安定性や脂溶性を有する。以上から、ジフルオロメチレン基は医農薬開発において近年注目を集めている。
これまでこの官能基の導入法として、アルケンのジフルオロ化反応が知られている。例えば2014年Szabóらは、超原子価ヨウ素試薬と化学量論量の銀塩による、スチレンのβ位ジフルオロ化反応を報告した(図 1A)[1]。また、2016年ハーバード大学のJacobsenらは、キラルヨードアレーン触媒を用いることで、アルケンからα位への不斉誘導を伴い、β,β-ジフルオロ化体を合成した(図 1B)[2]。これらのジフルオロ化体は、フェノニウムイオン中間体を経て得られる。さらに本反応において、α位にiPr基をもつアミドを基質とすると、カルボニルからの求核攻撃により、異なる中間体を経たa,b-ジフルオロ化体が生成する。
今回、Jacobsenとユタ大学のSigmanらは、アルケニルブロミドを用いることで、フェノニウムイオン中間体ではなく、ブロモニウムイオン中間体を経て同様の反応が進行し、キラルなジフルオロアルキルブロミドが得られることを見いだした(図 1C)。さらに、本反応における触媒と基質間に働く非共有結合性相互作用(noncovalent interaction: NCI)を調査することで、本反応のエナンチオ選択性発現の遷移状態構造について推測した。

図1. (A)スチレンのジフルオロ化反応、 (B)触媒的不斉ジフルオロ化反応、(C) 今回の反応

 

“Catalytic Enantioselective Synthesis of Difluorinated Alkyl Bromides”

Levin, M. D.; Ovian, J. M.; Read, J. A.; Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2020, 142, 14831–14837.

DOI: 10.1021/jacs.0c07043

 

論文著者の紹介

研究者: Matthew S. Sigman (研究室HP)
研究者の経歴:
–1992 B.S., Sonoma State University, USA (Prof. M. E. Wright)
1992–1996 Ph.D., Washington State University, USA (Prof. B. E. Eaton)
1996–1999 Postdoc, Harvard University, USA (Prof. E. N. Jacobsen)
1999–2004 Assistant Professor, Utah University, USA
2004–2008 Associate Professor, Utah University, USA
2008–2012 Professor, Utah University, USA
2012– Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry, Utah University, USA
研究内容: 物理化学的パラメータを通じた不斉触媒の迅速最適化・機構解析

研究者: Eric N. Jacobsen ( 研究室HP)
研究者の経歴:
–1982 B.S., New York University, USA (Prof. Y. E. Rhodes)
1982–1986 Ph.D., University of California, Barkley, USA (Prof. R. G. Bergman)
1986–1988 Postdoc, Massachusetts Institute of Technology, USA (Prof. K. B. Sharpless)
1988–1991 Assistant Professor, University of Illinois at Urbana-Champaign, USA
1991–1993 Associate Professor, University of Illinois at Urbana-Champaign, USA
1993– Professor, Harvard University, USA
研究内容:新規不斉触媒反応の開発

論文の概要

本反応はジクロロメタン溶媒中、ヨードアレーン触媒1存在下、種々のアルケニルブロミド2に対しオラー試薬(pyridine·9HF)とmCPBAを作用させることでジフルオロ化体3を与える(図2A)。本反応は、芳香環上に電子求引基をもつスチレンで進行し(3a,3b)、遊離のアルコール(3c)や一級アルキルブロミド(3d)を損なわずに進行する(図2C)。さらにヘテロ芳香環をもつ化合物(3e)にも適用可能である。また本反応の触媒は、そのベンジルエステル部位がブロモニウムイオン中間体に求核攻撃することで失活する。そのため、ベンジルエステルの芳香環に電子求引基として–SF5基を導入することでカルボニルの求核性を抑え、触媒の失活を抑制した。
著者らは、反応点から離れたベンジル基上の置換基によってエナンチオ選択性が変化したことから、NCIが関与していると考えた。
そこで、エナンチオ選択性と触媒や基質の種々のパラメーターとの間の直線エネルギー関係(linear free energy relationship: LFER)を調査することで、NCIを解析した。すなわち、対称性適応摂動理論(Symmetry-adapted perturbation theory: SAPT)を用いて、様々な相互作用エネルギーとエナンチオ選択性の相関を調査した。その結果、触媒のベンジル基とプローブ分子がもつC–H結合とのCH–π相互作用とエナンチオ選択性に良い相関が見られた(図 2C)。同様に基質がもつ芳香環のLUMOのエネルギーとエナンチオ選択性に相関が確認された(図 2D)。以上から、基質と触媒はCH–π、およびπ–π相互作用によって遷移状態を安定化し、エナンチオ選択性を発現したと推測される(図 2E)。

図2. (A)最適条件、(B)基質適用範囲、(C)CH–π相互作用エネルギーとエナンチオ選択性、(D)LUMOのエナルギーとエナンチオ選択性E) エナンチオ選択性発現の遷移状態構造

 

以上、α-アルケニルブロミドから含フッ素キラルアルキルブロミドの合成法が開発された。エナンチオ選択性の発現機構については未だ解明できていないものの、ヨードアレーン触媒のさらなる活性や安定性の向上が期待される。

参考文献

  1. Ilchenko, N. O.; Tasch, B. O. A.; Szabó, K. J. Mild Silver-Mediated Geminal Difluorination of Styrenes Using an Air- and Moisture-Stable Fluoroiodane Reagent. Angew. Chem., Int. Ed. 2014, 53, 12897–12901. DOI: 10.1002/anie.201408812
  2. Banik, S. M.; Medley, J. W.; Jacobsen, E. M. Catalytic, Asymmetric Difluorination of Alkenes to Generate Difluoromethylated Stereocenters. Science 2016, 353, 51–54. DOI: 1126/science.aaf8078
  3. (a) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem Rev. 1994, 94, 1887–1930. DOI: 10.1021/cr00031a008 (b) Gonthier, J. F.; Sherrill, C. D. Density-Fitted Open-Shell Symmetry-Adapted Perturbation Theory and Application to π-Stacking in Benzene Dimer Cation and Ionized DNA Base Pair Steps. J. Chem. Phys. 2016, 145, 134106. DOI: 10.1063/1.4963385

用語説明

・対称性適応摂動理論(Symmetry-adapted perturbation theory: SAPT): 摂動論の一種。非共有結合性相互作用におけるエネルギーの成分を解析する上で最もポピュラーな手法の一つである。本手法を用いることで相互作用エネルギーを正確に算出できる。

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Pixiv発!秀作化学イラスト集【Part 2】
  2. 有機合成化学協会誌6月号:ポリフィリン・ブチルアニリド・ヘテロ環…
  3. 次世代型合金触媒の電解水素化メカニズムを解明!アルキンからアルケ…
  4. 単分子レベルでの金属―分子接合界面構造の解明
  5. 実験する時の服装(企業研究所)
  6. 第九回ケムステVシンポジウム「サイコミ夏祭り」を開催します!
  7. 熱や力で真っ二つ!キラルセルフソーティングで構築されるクロミック…
  8. 3Dプリント模型を買ってコロナウイルス研究を応援しよう!

注目情報

ピックアップ記事

  1. 第五回ケムステVプレミアレクチャー「キラルブレンステッド酸触媒の開発と新展開」
  2. 研究者よ景色を描け!
  3. 第81回―「均一系高分子重合触媒と生分解性ポリマーの開発」奥田 純 教授
  4. ついに成功した人工光合成
  5. 生体分子反応を制御する: 化学的手法による機構と反応場の解明
  6. 分子間エネルギー移動を利用して、希土類錯体の発光をコントロール!
  7. ジョン・フレシェ Jean M. J. Frechet
  8. 有機反応を俯瞰する ーヘテロ環合成: C—X 結合で切る
  9. ポリメラーゼ連鎖反応 polymerase chain reaction(PCR)
  10. 三核ホウ素触媒の創製からクリーンなアミド合成を実現

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP