[スポンサーリンク]

化学者のつぶやき

エナンチオ選択的ジフルオロアルキルブロミド合成

[スポンサーリンク]

ブロモ基の転位を伴うアルケニルブロミドの不斉αジフルオロ化反応が開発された。本反応により生成する含フッ素キラルアルキルブロミドの医農薬品合成への利用が期待される。

ジフルオロメチレン基とアルケンのジフルオロ化反応

ジフルオロメタンは、種々のフルオロメタンの中で最も双極子モーメントが大きい。そのためジフルオロメチレン基の導入により、化合物の極性向上と粘性の低下が期待できる。さらに、ジフルオロメチレン基をもつ化合物は、他の含フッ素化合物と同様に高い代謝安定性や脂溶性を有する。以上から、ジフルオロメチレン基は医農薬開発において近年注目を集めている。
これまでこの官能基の導入法として、アルケンのジフルオロ化反応が知られている。例えば2014年Szabóらは、超原子価ヨウ素試薬と化学量論量の銀塩による、スチレンのβ位ジフルオロ化反応を報告した(図 1A)[1]。また、2016年ハーバード大学のJacobsenらは、キラルヨードアレーン触媒を用いることで、アルケンからα位への不斉誘導を伴い、β,β-ジフルオロ化体を合成した(図 1B)[2]。これらのジフルオロ化体は、フェノニウムイオン中間体を経て得られる。さらに本反応において、α位にiPr基をもつアミドを基質とすると、カルボニルからの求核攻撃により、異なる中間体を経たa,b-ジフルオロ化体が生成する。
今回、Jacobsenとユタ大学のSigmanらは、アルケニルブロミドを用いることで、フェノニウムイオン中間体ではなく、ブロモニウムイオン中間体を経て同様の反応が進行し、キラルなジフルオロアルキルブロミドが得られることを見いだした(図 1C)。さらに、本反応における触媒と基質間に働く非共有結合性相互作用(noncovalent interaction: NCI)を調査することで、本反応のエナンチオ選択性発現の遷移状態構造について推測した。

図1. (A)スチレンのジフルオロ化反応、 (B)触媒的不斉ジフルオロ化反応、(C) 今回の反応

 

“Catalytic Enantioselective Synthesis of Difluorinated Alkyl Bromides”

Levin, M. D.; Ovian, J. M.; Read, J. A.; Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2020, 142, 14831–14837.

DOI: 10.1021/jacs.0c07043

 

論文著者の紹介

研究者: Matthew S. Sigman (研究室HP)
研究者の経歴:
–1992 B.S., Sonoma State University, USA (Prof. M. E. Wright)
1992–1996 Ph.D., Washington State University, USA (Prof. B. E. Eaton)
1996–1999 Postdoc, Harvard University, USA (Prof. E. N. Jacobsen)
1999–2004 Assistant Professor, Utah University, USA
2004–2008 Associate Professor, Utah University, USA
2008–2012 Professor, Utah University, USA
2012– Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry, Utah University, USA
研究内容: 物理化学的パラメータを通じた不斉触媒の迅速最適化・機構解析

研究者: Eric N. Jacobsen ( 研究室HP)
研究者の経歴:
–1982 B.S., New York University, USA (Prof. Y. E. Rhodes)
1982–1986 Ph.D., University of California, Barkley, USA (Prof. R. G. Bergman)
1986–1988 Postdoc, Massachusetts Institute of Technology, USA (Prof. K. B. Sharpless)
1988–1991 Assistant Professor, University of Illinois at Urbana-Champaign, USA
1991–1993 Associate Professor, University of Illinois at Urbana-Champaign, USA
1993– Professor, Harvard University, USA
研究内容:新規不斉触媒反応の開発

論文の概要

本反応はジクロロメタン溶媒中、ヨードアレーン触媒1存在下、種々のアルケニルブロミド2に対しオラー試薬(pyridine·9HF)とmCPBAを作用させることでジフルオロ化体3を与える(図2A)。本反応は、芳香環上に電子求引基をもつスチレンで進行し(3a,3b)、遊離のアルコール(3c)や一級アルキルブロミド(3d)を損なわずに進行する(図2C)。さらにヘテロ芳香環をもつ化合物(3e)にも適用可能である。また本反応の触媒は、そのベンジルエステル部位がブロモニウムイオン中間体に求核攻撃することで失活する。そのため、ベンジルエステルの芳香環に電子求引基として–SF5基を導入することでカルボニルの求核性を抑え、触媒の失活を抑制した。
著者らは、反応点から離れたベンジル基上の置換基によってエナンチオ選択性が変化したことから、NCIが関与していると考えた。
そこで、エナンチオ選択性と触媒や基質の種々のパラメーターとの間の直線エネルギー関係(linear free energy relationship: LFER)を調査することで、NCIを解析した。すなわち、対称性適応摂動理論(Symmetry-adapted perturbation theory: SAPT)を用いて、様々な相互作用エネルギーとエナンチオ選択性の相関を調査した。その結果、触媒のベンジル基とプローブ分子がもつC–H結合とのCH–π相互作用とエナンチオ選択性に良い相関が見られた(図 2C)。同様に基質がもつ芳香環のLUMOのエネルギーとエナンチオ選択性に相関が確認された(図 2D)。以上から、基質と触媒はCH–π、およびπ–π相互作用によって遷移状態を安定化し、エナンチオ選択性を発現したと推測される(図 2E)。

図2. (A)最適条件、(B)基質適用範囲、(C)CH–π相互作用エネルギーとエナンチオ選択性、(D)LUMOのエナルギーとエナンチオ選択性E) エナンチオ選択性発現の遷移状態構造

 

以上、α-アルケニルブロミドから含フッ素キラルアルキルブロミドの合成法が開発された。エナンチオ選択性の発現機構については未だ解明できていないものの、ヨードアレーン触媒のさらなる活性や安定性の向上が期待される。

参考文献

  1. Ilchenko, N. O.; Tasch, B. O. A.; Szabó, K. J. Mild Silver-Mediated Geminal Difluorination of Styrenes Using an Air- and Moisture-Stable Fluoroiodane Reagent. Angew. Chem., Int. Ed. 2014, 53, 12897–12901. DOI: 10.1002/anie.201408812
  2. Banik, S. M.; Medley, J. W.; Jacobsen, E. M. Catalytic, Asymmetric Difluorination of Alkenes to Generate Difluoromethylated Stereocenters. Science 2016, 353, 51–54. DOI: 1126/science.aaf8078
  3. (a) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem Rev. 1994, 94, 1887–1930. DOI: 10.1021/cr00031a008 (b) Gonthier, J. F.; Sherrill, C. D. Density-Fitted Open-Shell Symmetry-Adapted Perturbation Theory and Application to π-Stacking in Benzene Dimer Cation and Ionized DNA Base Pair Steps. J. Chem. Phys. 2016, 145, 134106. DOI: 10.1063/1.4963385

用語説明

・対称性適応摂動理論(Symmetry-adapted perturbation theory: SAPT): 摂動論の一種。非共有結合性相互作用におけるエネルギーの成分を解析する上で最もポピュラーな手法の一つである。本手法を用いることで相互作用エネルギーを正確に算出できる。

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 準結晶的なナノパーティクルスーパーラティス
  2. ルドルフ・クラウジウスのこと① エントロピー150周年を祝って
  3. ヘム獲得系のハイジャックによる緑膿菌の選択的殺菌法
  4. チオカルバマートを用いたCOSのケミカルバイオロジー
  5. 第23回日本蛋白質科学年会 企画ワークショップ『反応化学の目から…
  6. ワイリーからキャンペーンのご案内 – 化学会・薬学会…
  7. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ③
  8. アカデミア有機化学研究でのクラウドファンディングが登場!

注目情報

ピックアップ記事

  1. ケンダール・ハウク Kendall N. Houk
  2. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click反応
  3. 日本化学会と対談してきました
  4. サイエンス・ダイレクトがリニューアル
  5. 光を吸わないはずの重原子化合物でも光反応が進行するのはなぜか?
  6. [(オキシド)フェニル(トリフルオロメチル)-λ4-スルファニリデン]ジメチルアンモニウムテトラフルオロボラート:[(Oxido)phenyl(trifluoromethyl)-lambda4-sulfanylidene]dimethylammonium Tetrafluoroborate
  7. 島津製作所がケムステVシンポに協賛しました
  8. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction
  9. マテリアルズ・インフォマティクス解体新書:ビジネスリーダーのためのガイド
  10. 【速報】新元素4つの名称が発表:日本発113番元素は「ニホニウム」!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー