[スポンサーリンク]

一般的な話題

電気化学ことはじめ(2) 電位と電流密度

[スポンサーリンク]

前回の記事ではざっくりと測定をするために必要なセットアップについて紹介しました。今回はもうちょっと原理的なところに立ち返って、測定で実際に観測される電位と電流密度について説明していきます。

そもそも酸化還元反応とは?

さて確認ですが、水は常温で放っておくと水素と酸素に分かれるでしょうか?答えはNoです。室温での地球上には非常に多くの水が存在していますよね。水を水素と酸素に分ける反応は吸熱的であり、実に1.23 eVもの電位が熱力学的に必要です。実際に水を電気分解するにあたっては多電子反応であるために速度論的に遅く、より大きな電位差が必要となります。ここからわかることとして、酸化還元試薬を用いる化学反応においては、ほぼ発熱的な条件下において実験を行うことが必要となります。分子系の反応では電位を制御することができないので、”強い”酸化剤、”強い”還元剤が必要となってきます。例えば、酸化剤のニトロソシウムと還元剤のナフタレニドを使うときには、脱水処理や色々準備が必要かと思います。一方で、それぞれの1電子移動に伴う酸化還元電位はフェロセン/フェロセニウムの酸化還元電位を基準として、+1 V vs. Fc/Fc+、-3 V vs. Fc/Fc+であることが知られています。それでは”強い”と”弱い”ってなんでしょうか?

図1.典型的な酸化還元試薬の電位。数字は文献1より借用。

強い、弱いを規定するための電位 -電位とpHの類似性-

さきほどの”強い”、”弱い”を規定するために、重要となるのが電位です。変な例ではありますが、寒い、暑いという感覚的なパラメータを説明するためには温度が必要となり、そのためには絶対零度や0度などといった基準が必要となります。同様の議論で電位を規定するためには基準が必要となり、理論的な一つの基準は真空準位です。真空準位は荷電粒子が周りからのクーロン相互作用を感じない状態で運動エネルギーが0の状態として定義され、そこからの相対的なエネルギーとして電位が規定されます。先程の温度との類似性という意味では真空準位は絶対零度、適当な参照電極というのは摂氏温度や華氏温度に相当します。また電位と電圧は違っており、それらの差は絶対的であるか、相対的であるかという点です。

それでは電位のアナロジーとして緩衝溶液のpHの概念から説明していきます。Henderson-Hasselbalchの式とNernstの式を並べてみます。

 {\rm pH = pKa+log{[A^-]\over[HA]}}</p>  <p>{\rm E = E_0+{RT\over nF}ln{a_{ox}\over a_{red}}}</p>

あれ??、というくらいほぼ同じです。緩衝溶液では酸と共役塩基の割合を10倍変化させるとpHが1ずれますが、電気化学では酸化還元体の濃度比は10倍変化させると59 mV電位が変わります。そして重要なことに酸塩基あるいは酸化体還元体の濃度比を変えることによりpHあるいは電位を精密に変えることができます。

それでは考え方を変えてみましょう。酸化体と還元体の濃度比を変化させたい(反応させたい)ときには酸化反応であれば、酸化体の濃度を高くすることが必要になります。このことはNernst式から考えると、基準となる酸化還元電位より高い電位に電位を設定することにより、自発的に酸化反応が進行するということに相当します。一方で還元体においては、還元体の濃度を高くしたいので、基準となる酸化還元電位より低い電位に設定することにより、自発的に還元反応を進行することが可能となります。

さてそれでは電気化学が得意としている電極と分子系に対して話をもどしましょう。電気化学がの特異性としては電極の有する電極電位を自由自在に変化することができるという点です。電気化学電位を掃引することによって、電子の有するエネルギーを自由自在に変化させて、分子の持っている酸化還元電位をプローブする、あるいは酸化還元反応を引き起こすことによって化学反応を促進することが可能です。

反応のしやすさを定義するための電流密度

上では反応させるための必要条件としての電位のみ話してきましたが、実際には電流密度として単位面積当たりにどの程度の数の電荷がどの程度の時間に流れたかを定義することが必要となってきます。前回の記事で対極に必要な条件として作用極の数倍程度の大きさを有する電極が必要となると書いたと思いますが、本質的に電流密度の考え方が必要となってきます。あくまで電気化学計測は電気回路をつくって、その中での酸化還元反応を利用した電子の回路を観測するものです。そのため、作用極で行われた化学反応に関与する電子は必ず対極でも同じ数必要となります。庭に水をまくときにホースの先端を小さくすると、出てくる水の勢いが強くなるような感じで、それは断面積が小さいからです。電子の数を単位時間あたりで割ったものが電流に相当しますが、電極面積が多い場合には、一つのサイトあたりでの単位時間あたりでの反応電子数が低くなります。一方で、電極面積が仮に非常に狭い場合には、単位面積あたりでの反応する電流が多くなってしまい、結果的に副次的な反応が必要となってきます。そのために腐食や溶解等といった副次的な反応が起こってしまい、系を荒らす原因となりかねません。ですので、いわゆる反応で使うTOFのような概念と同じ形で、電流密度を規定する必要があります。

まとめると

そもそも酸化還元反応を起こすために必要な電位と電流密度に対して概略しました。次回はポテンショスタットの中身と典型的なCVで何を計測しているのかに関して話をする予定です。

参考文献

1 Neil G. Connelly and William E. Geiger, Chem. Rev. 1996, 96, 2, 877–910. DOI: 10.1021/cr940053x

はいぶりっど。

投稿者の記事一覧

はいぶりっど化学者。好きな言葉は"The sky is not limited"

関連記事

  1. シス優先的プリンス反応でsemisynthesis!abeo-ス…
  2. 化学の力で複雑なタンパク質メチル化反応を制御する
  3. 「関口存男」 ~語学の神様と言われた男~
  4. リチウムを用いたメカノケミカル脱水素環化法によるナノグラフェン合…
  5. 化学者のためのエレクトロニクス入門① ~電子回路の歴史編~
  6. 多置換ケトンエノラートを立体選択的につくる
  7. 特許にまつわる初歩的なあれこれ その1
  8. 2013年(第29回)日本国際賞 受賞記念講演会

注目情報

ピックアップ記事

  1. 阪大で2億7千万円超の研究費不正経理が発覚
  2. ヒト遺伝子の ヒット・ランキング
  3. 令和元年度 のPRTR データが公表~第一種指定化学物質の排出量・移動量の集計結果~
  4. 第10回 野依フォーラム若手育成塾
  5. 新海征治 Seiji Shinkai
  6. オカモトが過去最高益を記録
  7. セイファース・ギルバート アルキン合成 Seyferth-Gilbert Alkyne Synthesis
  8. 【朗報】HGS分子構造模型が入手可能に!
  9. 十全化学株式会社ってどんな会社?
  10. MALDI-ToF MSを使用してCOVID-19ウイルスの鼻咽頭拭い液からの検出に成功

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP