[スポンサーリンク]

化学者のつぶやき

(–)-Spirochensilide Aの不斉全合成

[スポンサーリンク]

()-Spirochensilide A初の不斉全合成が達成された。タングステンを用いたシクロプロペンとアルキンのPauson–Khand反応によるスピロ環構築が鍵となる。

(–)-Spirochensilide A

モミ属(Abies)の粗抽出物や代謝物は抗腫瘍や抗菌、抗潰瘍性、抗炎症、鎮咳といった生物活性をもち、これまでにモミ属から250を超えるテルペノイドとその類縁体が単離されてきた[1]

2015年にGaoらによって、中国の固有種であるAbies chensiensisからspirochensilide A(1)、B(2)およびそれらの生合成前駆体と考えられる化合物3が単離、構造決定された(図1A)[1]

1の構造的特徴としては、2組の隣接する不斉四級炭素(C8/C10およびC13/C17)とスピロ[4.5]環(BC環)、およびスピロケタール骨格(EF環)を有することが挙げられる。二つのスピロ環を有する六環性骨格の効率的構築が1の全合成における課題となる。また、1はマウスマクロファージ細胞株に対する一酸化窒素産生阻害活性を示し、炎症性疾患研究への応用が期待される[2]

Gaoらは1の生合成仮説を次のように提唱している(図1B)。まず3が酸化されてエポキシド4を生成し、House–Meinwald転位によって5を与える。5は位置選択的なC–H酸化を受け6となり、Wagner–Meerwein転位を経て7が生成する。続く分子内アリル位酸化およびエーテル化、カルボニル基の還元により1が生成すると考えられている。しかし本生合成仮説はHouse–Meinwald転位が進行せず実証には至っていない。

今回、北京大学のYang教授らは12の全合成の報告例がない中、8から全22工程、総収率2.2%で(–)-1の初の全合成を達成した(図1C)。House–Meinwald転位でB環を、タングステンを用いたシクロプロペン10の分子内Pauson–Khand反応によりCD環を構築し、スピロ環骨格を形成したことが本合成の特徴である。

図1 (A)の構造 (B) 1の生合成仮説 (C) 逆合成解析

 

“Asymmetric Total Synthesis of ()-Spirochensilide A”

Liang, X.-T.; Chen, J.-H.; Yang, Z. J. Am. Chem. Soc. 2020, 142, 8116–8121.

DOI: 10.1021/jacs.0c02522

論文著者の紹介


研究者:Zhen Yang  

研究者の経歴:
1978–1982 B.S., Shenyang Pharmaceutical University, China
1983–1986 M.S., Shenyang Pharmaceutical University, China (Prof. Qihuai Chen)
1989–1992 Ph.D. The Chinese University of Hong Kong, China (Prof. Henry N. C. Wong)
1992–1995 Postdoc, The Scripps Research Institute, USA (Prof. K. C. Nicolaou)
1995–1998 Assistant professor, The Scripps Research Institute, USA
1998–2001 Institute Fellow, Harvard Medical School
2001– Professor, Peking University Shenzhen Graduate School, China

研究内容:合成方法論の開発、天然物合成、化学遺伝学

論文の概要

まず、エポキシド8から二工程で二環式化合物12を合成した。続いてmCPBAでエポキシ化し、中間体13としたのち、ルイス酸によるHouse–Meinwald転位でアルデヒド14へと誘導した。

次に有機リチウム試薬を付加させ、側鎖にシクロプロペンを導入した。続くPauson–Khand反応を詳細に検討したところ、W(CO)3(MeCN)3を触媒として用いた場合に、目的のジアステレオマー16aが収率30%で得られることを見出した[3]。本反応は環歪みのあるオレフィンを用いることが鍵であった[4]。そして、二工程で17を合成し、Birch条件下還元的にシクロプロパンを開環することで18とした。

その後、ホウ素エノラートを用いたアルドール反応により19のみを単一の異性体として与えた。なお、考え得る六員環遷移状態のうち、19の立体化学を与える遷移状態TS-Aが最安定であることが、DFT計算によって示されている。

続いて、得られたアルドール成績体から五工程の変換によりアリルアルコール20へと導いた。一重項酸素によりフラン環を酸化開裂したのち酸処理することでスピロケタール21とした。最後に種々の官能基変換を経て(–)-1の全合成を達成した。

図2 Spirochensilide Aの合成

 

以上、全22工程で(–)-1の初の不斉全合成が達成された。今後、合成研究と生物学的研究のさらなる展開が期待される。

参考文献

  1. Zhao, Q.-Q.; Song, Q.-Y.; Jiang, K.; Li, G.-D.; Wei, W.-J.; Li, Y.; Gao, K. Spirochensilides A and B, Two New Rearranged Triterpenoids from Abies Chensiensis. Org. Lett. 2015, 17, 2760–2763. DOI: 1021/acs.orglett.5b01166
  2. Yamamoto, Y.; Gaynor, R. B. Therapeutic Potential of Inhibition of the NF-κB Pathway in the Treatment of Inflammation and Cancer. J. Clin. Invest. 2001, 107, 135–142. DOI: 10.1172/JCI11914
  3. (a) Hoye, T. R.; Suriano, J. A. A [W(CO)5THF]-Mediated Pauson-Khand Reaction: Cyclizations of 1,6-Enynes via a Batch- Catalytic Protocol. J. Am. Chem. Soc. 1993, 115, 1154–1516. DOI: 10.1021/ja00056a053 (b) García-García, P.; Fernańdez-Rodríguez, M. A.; Rocaboy, C.; Andina, F.; Aguilar, E. A Sub-Stoichiometric Tungsten-Mediated Pauson−Khand Reaction: Scope and Limitations. J. Organomet. Chem. 2008, 693, 3092–3096. DOI: 10.1016/j.jorganchem.2008.06.032
  4. Pallerla, M. K.; Fox, J. M. Diastereoselective Intermolecular Pauson–Khand Reactions of Chiral Cyclopropenes. OrgLett. 2005, 7, 3593–3595. DOI: 10.1021/ol051456u (b) Pallerla, M. K.; Fox, J. M. Enantioselective Synthesis of (–)-Pentalenene. Org. Lett. 2007, 9, 5625–5628. DOI: 10.1021/ol702597y (c) Pallerla, M. K.; Yap, G. P. A.; Fox, J. M. Co-Complexes Derived from Alkene Insertionto Alkyne-Dicobaltpentacarbonyl Complexes: Insight into the Regioselectivity of Pauson–Khand Reactions of Cyclopropenes. J. Org. Chem. 2008, 73, 6137–6141. DOI: 10.1021/jo800776z

関連書籍

[amazonjs asin=”3642440924″ locale=”JP” title=”Total Synthesis of Natural Products: At the Frontiers of Organic Chemistry”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 各ジャーナル誌、続々とリニューアル!
  2. 電流励起による“選択的”三重項励起状態の生成!
  3. 向かう所敵なし?オレフィンメタセシス
  4. 分子1つがレバースイッチとして働いた!
  5. ポンコツ博士の海外奮闘録⑤ 〜博士,アメ飯を食す。バーガー編〜
  6. 5配位ケイ素間の結合
  7. 光触媒ーパラジウム協働系によるアミンのC-Hアリル化反応
  8. 電池材料粒子内部の高精細な可視化に成功~測定とデータ科学の連携~…

注目情報

ピックアップ記事

  1. ジャスティン・デュボア Justin du Bois
  2. 分子があつまる力を利用したオリゴマーのプログラム合成法
  3. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part II
  4. マイケル・オキーフィ Michael O’Keeffe
  5. 創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~
  6. 【速報】2018年ノーベル化学賞は「進化分子工学研究への貢献」に!
  7. 活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜
  8. キムワイプをつくった会社 ~キンバリー・クラーク社について~
  9. 化学のうた
  10. 経験と資格を生かしたいが実務経験なし。 そんな30代女性の再就職をかなえたビジョンマッチング

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP