[スポンサーリンク]

一般的な話題

化学工業で活躍する有機電解合成

[スポンサーリンク]

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全に、なるべく特殊な条件を用いず、有害な廃棄物が生じない方法で合成を行うことが求められます。また、コスト面の制約から反応の収率向上により歩止まりを改善するのみならず、安価で安定供給可能な試薬・原料から出発する必要もあります。このように様々な制約に縛られる企業の研究開発ですが、その打開策の一つとして有機電解合成が存在感を高めています。

電解合成の利点のうち、代表的なものは以下の3つです。

①熱エネルギーのみでは進行しない反応を駆動可能

マクスウェル・ボルツマン分布より、粒子の平均エネルギーは3kBT/2で表されます。したがって、例えば3 evのエネルギーに相当する温度を求めるとT≈23000 Kとなり、乾電池2つ分程度の電位差で得られるエネルギーが、分子がプラズマ化するような温度に相当することがうかがえます。

これはあくまで単純計算ではありますが、熱エネルギーのみでは起こりえない電子遷移を進行させるうえで、電気化学的手法が適しているといえます(光反応も同様です)。

イメージ(画像:いらすとやより改変)

②極性変換が容易

通常、有機化学における極性変換(Umpolung)にはGrignard試薬に代表される有機金属試薬の調製や、近年発展の著しい有機金属化学においては遷移金属触媒の使用が広く行われています。これらのアプローチは極めて重要なもので、今後の進展も期待されますが、工業化する上では自然発火などの危険の高い有機金属試薬や、安定供給に難のある高価な貴金属の使用はなるべく回避したいものです。

電解合成には適用範囲の狭小さという課題もありますが、これらを用いることなく簡便に極性変換が可能であるという長所があります。

Grignard試薬(画像:Wikipedia

③電位など電解条件による選択性の発現

電解合成では電位に応じた高選択的な酸化・還元を行うことが可能で、通常の反応では合成困難な成績体を得ることも可能です。

特異な例では、基質の双極子モーメントを利用した選択的脱ハロゲン化なども報告されています。

以下ではこうした特長を有する有機電解合成のうち、工業化に成功した事例をかいつまんでご紹介していきます。

アクリロニトリルの選択的二量化によるアジポニトリルの合成

ナイロン6,6の合成の原料となるヘキサメチレンジアミンアジピン酸は、かつてはシクロヘキサンの触媒酸化を起点として合成されてきましたが、酸化反応の潜在的な危険性と工程の煩雑さが課題でした。両者はいずれもアジポニトリルの加水分解によって調製可能であり、そのアジポニトリルが安価なアクリロニトリルの二量体とみなせることに目を付けたMonsanto社(現 Bayer傘下)と旭化成は、アクリロニトリルの電解二量化によるアジポニトリルの工業生産法の開発にしのぎを削りました。

その結果、両者とも4級アンモニウム塩存在下で水に難溶性のアクリロニトリルを溶解/分散させて電解還元する手法に到達しました。この反応はカソード上でのプロトンの還元(HER; Hydrogen Evolution Reaction)と競合することから、HER過電圧の大きな電極材料の選択が重要であり、MonsantoはCd、旭化成はPbを用いた手法を確立しました。なお、アクリロニトリルの酸化電位は十分に正であることから、適切な条件を設定することでアノードでは水の酸化(OER; Oxygen Evolving Reaction)のみが進行します。

(画像:[1]

フタリド/芳香族アルデヒドの合成

植物保護剤、甲陵、紫外線吸収剤、めっき浴添加剤など多彩な用途に用いられるフタリドと4-tert-butylbenzaldehydeですが、BASF社は極めて無駄のない両極合成法を開発しました。

アノードでは4-tert-butyltolueneのベンジル側鎖が酸化されてアルデヒドのアセタールが、カソードではフタル酸ジメチルが還元されてフタリドが生じますが、両反応で消費/生成する電子数/プロトン数は完全に一致しており、さらに収率も約90%と極めて近い値となっています。その点で非常にエレガントな合成法といえます。

なお、BASFはほかにも、陽極酸化によるanisaldehydeやp-tolualdehydeの製造も行っています。

a

(画像:[2]

位置選択的脱ハロゲン化による3,6-ジクロロピコリン酸の合成

3,6-ジクロロピコリン酸は農薬の合成中間体として重要な化合物です。Daw Chemical社は3,4,5,6-テトラクロロピコリン酸の脱ハロゲン化による選択的合成の工業化を達成しました。化学的な還元では4-位、5-位のみの選択的な脱ハロゲン化は至難の業に見えますが、電解還元であれば可能です。

3,4,5,6-テトラクロロピコリン酸は電離状態において下図に示すような双極子モーメントを持っているため、カソードに対して4-位、5-位が接近するような配向状態を取ります。この状態で電子授受が行われることにより、これらの部位のみが特異的に還元され、所望の成績体のみを与えます[3]。電解における電場と表面反応という特性を十二分に生かした秀逸な手法ですね。

このほかにも、β-ラクタム系抗菌剤の一種、セファロスポリン系薬剤の合成中間体であるGCLEの合成にも電解反応が利用されています。大塚化学はアノード酸化を駆使してアリル位クロロ化を行い、選択的に目的物を生産しています[4]。

このように、電極反応でしか為しえない合成も数多くあり、工程の短縮やコストの低減に一役買っています。今後ますます化学工業における電解合成の存在感が高まっていくことも予想されます。

参考文献

  1. Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile, E. Blanco, A. Z. Dookhith and M. A. Modestino, React. Chem. Eng., 2019, 4, 8 DOI:10.1039/C8RE00262B
  2. [Aust N., Kirste A. (2014) Paired Electrosynthesis. In: Kreysa G., Ota K., Savinell R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-6996-5_370
  3. Ma, C. & Xu, Y. & Chu, Y. & Mao, X. & Zhao, F. & Zhu, Y.. (2010). Electrochemical synthesis of 3, 6-dichloropicolinic acid and its industrialization. Huagong Xuebao/CIESC Journal. 61. 699-703. https://www.researchgate.net/publication/289862479_Electrochemical_synthesis_of_3_6-dichloropicolinic_acid_and_its_industrialization
  4. 各種セファロスポリン抗生物質へ展開できる多目的中間体: 大塚化学

関連書籍

[amazonjs asin=”4339066249″ locale=”JP” title=”有機電気化学―基礎から応用まで”] [amazonjs asin=”4061394134″ locale=”JP” title=”有機電解合成―電解酸化の方法と応用”] [amazonjs asin=”4807908766″ locale=”JP” title=”工業有機化学―原料多様化とプロセス・プロダクトの革新〈上〉”] [amazonjs asin=”4807908774″ locale=”JP” title=”工業有機化学 下: 原料多様化とプロセス・プロダクトの革新”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 「関口存男」 ~語学の神様と言われた男~
  2. 副反応を起こしやすいアミノ酸を迅速かつクリーンに連結する
  3. レドックス反応場の論理的設計に向けて:酸化電位ギャップ(ΔEox…
  4. 湿度変化で発電する
  5. 有機合成化学協会誌2024年11月号:英文特集号
  6. 植物生合成の謎を解明!?Heteroyohimbine の立体制…
  7. ダニエル レオノリ Daniele Leonori
  8. 化学反応のクックパッド!? MethodsNow

注目情報

ピックアップ記事

  1. 第72回―「タンパク質と融合させた高分子材料」Heather Maynard教授
  2. エステルからエーテルをつくる脱一酸化炭素金属触媒
  3. クリック反応を用いて、機能性分子を持つイナミド類を自在合成!
  4. 顕微鏡で有機化合物のカタチを決める!
  5. 新たな環状スズ化合物の合成とダブルカップリングへの応用
  6. MEDCHEM NEWS 31-3号「ケムステ代表寄稿記事」
  7. バーゼル Basel:製薬・農薬・化学が集まる街
  8. 高分子マテリアルズ・インフォマティクスのための分子動力学計算自動化ライブラリ「RadonPy」の概要と使い方
  9. ハーバード大Whitesides教授プリーストリーメダルを受賞
  10. 触媒のチカラで不可能を可能に?二連続不斉四級炭素構築法の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー