[スポンサーリンク]

化学者のつぶやき

ボリル化剤を無駄なく使えるsp3C–H結合ボリル化

[スポンサーリンク]

不活性なアルケンの効率的なsp3C–Hボリル化反応が開発された。鍵はジピリジルアリールメタン配位子を用いたことであり、neat条件下、またシクロヘキサン溶媒中5当量に基質を減らしても反応が進行する。

Ir触媒による不活性アルカンのsp3C–H結合ボリル化

C–Hボリル化はC–H結合を様々な官能基へ導けるボリル基に変換できる強力な手法である[1]。急速に進展しているこの分野において、sp3C–Hボリル化は未だ挑戦的な課題である。

Ir触媒を用いることでベンジル位やシクロプロパン、配向基(DG)を有するアルカンの効率的なsp3C–Hボリル化は達成されてきたが、単純アルカンなど不活性なsp3C–Hボリル化は未だ課題が多い(図1A)[2]

最たる課題は、アルカンを溶媒量要する点とジボロンの転化率の低さである。例えば、芳香族C–Hボリル化において高い触媒活性をもつことが知られるIr/Me4phen (Me4phen: 3,4,7,8-テトラメチルフェナントロリン)を用いて溶媒量のn-オクタンとB2pin2を反応させた場合、収率88%でボリル化生成物が得られる(図1B)[3a]。しかし、n-オクタンを4当量とすると収率は17%にとどまる[2e]

さらに、溶媒量のオクタンを用いた際の収率88%は一分子のB2pin2に対する収率であり、収率をホウ素原子基準で換算すると改善の余地は明白となる。これらB2pin2を用いるC–Hボリル化では、反応後にHBpinを生成するが、このHBpinをボリル化剤に活用できていないことがジボロンの低い転化率の原因である。現状、不活性アルカン(溶媒量)のC–Hボリル化において、Hartwigらが報告したCp*Rh触媒のみが高い転化率でB2pin2を変換できている(収率176%; B2pin2一分子を基準に換算)。

今回、米国Vanderbilt大学のSchleyらは、ジピリジルアリールメタン配位子(L1)をもつIr触媒が不活性アルカンのsp3C–Hボリル化において高い活性をもつことを明らかにした。本触媒を用いることで高い転化率でB2pin2を反応させることができる。また、シクロヘキサンを溶媒に用い、基質のアルカンを5当量まで減らしても本反応は進行する。

図 1. ジボロンを用いたC–H結合ボリル化反応 (A) 従来の反応の課題、(B) n-オクタンのボリル化

 

“Iridium-Catalyzed sp3 CH Borylation in Hydrocarbon Solvent Enabled by 2,2-Dipyridylarylmethane Ligands”

Jones, M. R.; Fast, C. D.; Schley, N. D. J. Am. Chem. Soc. 2020, 142, 6488–6492.

DOI: 10.1021/jacs.0c00524

論文著者の紹介


研究者:Nathan D. Schley

研究者の経歴:
2007 B.S., University of California Davis, USA (Prof. Philip P. Power)
2007–2012 Ph.D., Yale University, USA (Prof. Robert H. Crabtree)
2012–2015 NIH Postdoctoral Fellow, California Institute of Technology, USA (Prof. Gregory C. Fu)
2015–present Assistant Professor, Vanderbilt University, USA

研究内容:不活性な分子の活性化、遷移金属触媒によるC–H結合変換反応の開発

論文の概要

著者らは、[Ir(cod)(OMe)]2を触媒とし、溶媒量のn-オクタン(1a)とB2pin2を120 °Cで24時間反応させる条件のもと、ジピリジルメタン配位子を種々検討した(図2A)。

その結果、ジピリジルアリールメタン骨格が良い結果を与え、中でもアリール基上に一つフッ素原子をもつL1が高い活性をもつことを見いだした。彼らはこの配位子がもつアリール基のオルト位炭素もイリジウムに配位することでk3配位をとっていると考えた。このk3配位様式は、アルカンsp3C–Hボリル化で高活性なCp*Rh触媒がもつCp*のような“面型の配位様式”と類似するため高い活性を示したと考察している。しかし、このような配位様式の類似性と高い触媒活性との相関は未だ不明である。L1を用いて種々の金属触媒を検討したところ、[Rh(cod)OMe]2は低収率であった。(Mes)Ir(Bpin)3が最適であり、この場合触媒量を1 mol%まで減らしても反応が定量的に進行することがわかった。

次に、基質適用範囲を調査した。基質を溶媒量用いた際、ジブチルエーテルやトリエチルアミンもボリル化できた(2b,2c; 図2B(i))。ブチルエチルエーテルでは、酸素b位のメチル基が選択的にボリル化された(2d)。ヘキサン酸メチルのボリル化はメチル基選択的に進行した(2e)。また、収率は低下するものの、シクロヘキサン溶媒中、5当量のアルカンを用いても反応が進行する(図2B (ii))。また、neat条件ではアミドやラクトンなど極性が高い基質のボリル化は進行しなかったが、シクロヘキサン溶媒中で反応させるとボリル化できることがわかった(2f, 2g)。

本反応はB2pin2を基準とすると、収率が100%を超えていることから、副生成物のHBpinも消費されていると考えられる。最適条件のもと、HBpinをホウ素化剤としてn-オクタンのボリル化したところ収率は37%に留まった。しかし、0.1当量のB2pin2を添加した後、0.8当量HBpinを加えたところ、収率71%で2aが生成した(図 2C)。n-オクタン、B2pin2、HBpin各反応の経時変化を11B NNRで追跡したところ、HBpinは一定時間までは増加し、その後消費されていくことが確認された。このような傾向はCp*Rh触媒系にもみられるが、詳細な機構は明らかにはなっていない。

図 2. (A) 反応条件の最適化、(B) (i) neat条件下 (ii) シクロヘキサン溶媒中での基質適用範囲、(C) B2pin2とHBpinの消費傾向

以上、Ir/ジピリジルアリールメタン触媒を用いることで、ボリル化剤を無駄なく消費できるsp3C–Hボリル化反応が達成された。今後は、反応機構の解明を通じてさらに高活性な触媒の開発が期待される。

参考文献

  1. (a) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Thermal, Catalytic, Regiospecific Functionalization of Alkanes. Science 2000, 287, 1995− DOI: 10.1126/science.287.5460.1995 (b) Goldberg, K. I.; Goldman, A. S. Large-Scale Selective Functionalization of Alkanes. Acc. Chem. Res. 2017, 50, 620–626. DOI: 10.1021/acs.accounts.6b00621 (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C–H Activation for the Construction of C–B Bonds. Chem. Rev. 2010, 110, 890–931. DOI: 10.1021/cr900206p
  2. (a) Larsen, M. A.; Wilson, C. V.; Hartwig, J. F. Iridium-Catalyzed Borylation of Primary Benzylic C–H Bonds without a Directing Group: Scope, Mechanism, and Origins of Selectivity. J. Am. Chem. Soc. 2015, 137, 8633–8643. DOI: 10.1021/jacs.5b04899 (b) Cho, S. H.; Hartwig, J. F. Iridium–Catalyzed Borylation of Secondary Benzylic C–H Bonds Directed by a Hydrosilane. J. Am. Chem. Soc. 2013, 135, 8157–8160. DOI: 10.1021/ja403462b(c) Liskey, C. W.; Hartwig, J. F. Iridium-Catalyzed C–H Borylation of Cyclopropanes. J. Am. Chem. Soc. 2013, 135, 3375–3378. DOI: 10.1021/ja400103p(d) Shi, Y.; Gao, Q.; Xu, S. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective C(sp3)−H Borylation of Cyclopropanes. J. Am. Chem. Soc. 2019, 141, 10599−10604. DOI: 10.1021/jacs.9b04549 (e) Ohmura, T.; Torigoe, T.; Suginome, M. Functionalization of Tetraorganosilanes and Permethyloligosilanes at a Methyl Group on Silicon via Iridium-Catalyzed C(sp3)–H Borylation. Organometallics 2013, 32, 6170−6173. DOI: 10.1021/om400900z (f) Ohmura, T.; Torigoe, T.; Suginome, M. Catalytic Functionalization of Methyl Group on Silicon: Iridium-Catalyzed C(sp3)–H Borylation of Methylchlorosilanes. J. Am. Chem. Soc. 2012, 134, 17416–17419. DOI: 10.1021/ja307956w (g) Yamamoto, T.; Ishibashi, A.; Suginome, M. Boryl-Directed, Ir-Catalyzed C(sp3)−H Borylation of Alkylboronic Acids Leading to Site-Selective Synthesis of Polyborylalkanes. Org. Lett. 2019, 21, 6235−6240. DOI: 10.1021/acs.orglett.9b02112 (h) Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. Synthesis of Primary and Secondary Alkylboronates through Site-Selective C(sp3)–H Activation with Silica-Supported Monophosphine–Ir Catalysts. J. Am. Chem. Soc. 2013, 135, 2947–2950. DOI: 10.1021/ja3126239 (i) Mita, T.; Ikeda, Y.; Michigamia, K.; Sato, Y. Iridium-Catalyzed Triple C(sp3)–H Borylations: Construction of Triborylated sp3–Carbon Centers. Chem. Commun. 2013, 49, 5601–5603. DOI: 10.1039/c3cc42675k (j) Reyes, R. L.; Iwai, T.; Maeda, S.; Sawamura, M. Iridium-Catalyzed Asymmetric Borylation of Unactivated Methylene C(sp3)−H Bonds. J. Am. Chem. Soc. 2019, 141, 6817−6821. DOI: 10.1021/jacs.9b01952
  3. (a)Liskey, C. W.; Hartwig, J. F. Iridium-Catalyzed Borylation of Secondary C−H Bonds in Cyclic Ethers. J. Am. Chem. Soc. 2012, 134, 12422−12425. DOI: 10.1021/ja305596v (b) Li, Q.; Liskey, C. W.; Hartwig, J. F. Regioselective Borylation of the C−H Bonds in Alkylamines and Alkyl Ethers. Observation and Origin of High Reactivity of Primary C−H Bonds Beta to Nitrogen and Oxygen. J. Am. Chem. Soc. 2014, 136, 8755−8765. DOI: 10.1021/ja503676d
  4. Similar reports to see; (a) Oeschger, R.; Su, B.; Yu, I.; Ehinger, C.; Romero, E.; He, S.; Hartwig, J. Diverse Functionalization of Strong Alkyl C–H Bonds by Undirected Borylation. Science 2020, 368, 736–741. DOI: 1126/science.aba6146 (b) Miyamura, S.; Araki, M.; Suzuki, T.; Yamaguchi, J.; Itami, K. Stereodivergent Synthesis of Arylcyclopropylamines by Sequential C–H Borylation and Suzuki–Miyaura Coupling. Angew. Chem., Int. Ed. 2015, 54, 846–851. DOI: 10.1002/anie.201409186

関連書籍

[amazonjs asin=”3132429724″ locale=”JP” title=”Science of Synthesis: Advances in Organoboron Chemistry Towards Organic Synthesis”][amazonjs asin=”B00UA7TCNY” locale=”JP” title=”Synthesis and Application of Organoboron Compounds (Topics in Organometallic Chemistry Book 49) (English Edition)”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり⑱:Apple…
  2. 二重芳香族性を示す化合物の合成に成功!
  3. 高分子固体電解質をAIで自動設計
  4. 芳香族化合物のC–Hシリル化反応:第三の手法
  5. 第38回ケムステVシンポ「多様なキャリアに目を向ける:化学分野の…
  6. CAS Future Leaders Program 2022 …
  7. 「アニオン–π触媒の開発」–ジュネーブ大学・Matile研より
  8. 低温低圧・常温常圧窒素固定の反応開発 最新情報サマリー その1

注目情報

ピックアップ記事

  1. “見た目はそっくり、中身は違う”C-グリコシド型擬糖鎖/複合糖質を開発
  2. CSJカレントレビューシリーズ書評
  3. 電子を閉じ込める箱: 全フッ素化キュバンの合成
  4. 国際化学オリンピック2022日本代表決定/化学グランプリ2022応募始まる
  5. レスベラトロール /resveratrol
  6. 反応中間体の追跡から新反応をみつける
  7. 最新有機合成法: 設計と戦略
  8. 170年前のワインの味を化学する
  9. 水と塩とリチウム電池 ~リチウムイオン電池のはなし2にかえて~
  10. Natureが査読無しの科学論文サイトを公開

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー