[スポンサーリンク]

スポットライトリサーチ

炭素-炭素結合を組み替えて多環式芳香族化合物を不斉合成する

[スポンサーリンク]

第264回のスポットライトリサーチは、高野 秀明 博士にお願いしました。

多環式芳香族炭化水素(PAH)は近年様々な角度からの研究が進められている、世界中でホットな研究トピックです。これを光学活性な形に出来れば円偏光発光(CPL)などをもとにした3Dディスプレイなどへの応用が期待できます。こういった光学活性PAHの不斉合成は困難な課題ですが、C-C活性化触媒系を用いてあっと驚く経路で達成したというのが今回の成果です。この成果は早稲田大学 先進理工学部(柴田研究室)で行われ、J. Am. Chem. Soc.誌 原著論文・プレスリリースに公開されています。また、Cover Pictureとして見事採用される栄誉にも輝いています。

“Catalytic Enantioselective Synthesis of Axially Chiral Polycyclic Aromatic Hydrocarbons (PAHs) via Regioselective C–C Bond Activation of Biphenylenes”
Takano, H.; Shiozawa, N.; Imai, Y.; Kanyiva, K. S.; Shibata, T.  J. Am. Chem. Soc. 2020, 142, 4714–4722. doi:10.1021/jacs.9b12205

研究室を主宰されている柴田高範 教授から、高野さんについて以下のコメントを頂いています。高野さんは博士号取得後、現在は北海道大学 化学反応創成研究拠点(ICReDD)で博士研究員として勤務され、新たなキャリアを歩まれています。前途洋々な若手のインタビューをお楽しみください!

 髙野くんは、学部の頃よりニックネームが「ミスター」であり、研究室でも、6年間「ミスター」(さん)として、先輩、同輩、後輩から慕われました。彼の面目躍如の活躍は、正に「ミスター」の名に相応しく、研究室を先導(良い意味で「扇動」)し続けました。常に発される髙野くんの(有機)化学大好きオーラに周りは圧倒され、そして励まされて、研究に行き詰まって苦しい時も笑顔を絶やさず、次の実験に向かう姿に、研究者として高い潜在性を感じます。
3月に無事「ドクター」になりましたが、今後も、「有機化学」そして「化学」界の「ミスター」としての活躍を期待します。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

従来、らせん不斉を有する多環芳香族炭化水素(PAHs)の触媒的不斉合成は知られていましたが、軸不斉PAHsの触媒的不斉合成はほとんど報告されていませんでした。その理由は、一般的な軸不斉創製では基質のヘテロ原子と触媒の相互作用を利用するのに対し、炭素と水素のみからなる軸不斉PAHs合成ではその相互作用を利用できないからです。
そこで今回我々は、そこで今回我々は、分子内に配向基かつ反応部位として機能するアルキン部位を有するビフェニレン誘導体をキラルロジウム触媒存在下反応させることで、ビフェニレンの立体的に混み合ったC-C結合の切断を伴う軸不斉PAHsの高エナンチオ選択的合成を達成しました。また、複数の反応部位を有する連続反応へ応用することでベンゼン環が9つ縮環した軸不斉化合物の高エナンチオ選択的合成を達成しました。

さらに、得られた軸不斉PAHsは有機分子としては比較的大きなCPL特性を有していることも明らかとなりました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

最も思い入れがあるのは、連続反応による高次に縮環した光学活性PAHsのワンポット合成です。複雑な炭素骨格が一気に組み上がる格好良さから、研究の初期段階から連続反応の達成を最終目標としており、効率のいい原料合成法をいつも考えていました。結果的としては、市販のn-BuLiを濃縮するというトリッキーな合成法を駆使して、連続反応の基質であるビフェニレン誘導体の合成に成功しました。そして、最適条件下反応を行ったところ、非常に高い収率で所望の多環式化合物が得られました。得られた生成物をHPLCで分析した際、キレイなone peakのチャートを目にしたときの感動はひとしおでした。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

高エナンチオ選択性の実現のための条件検討に最も苦労しました。所望の反応自体はすぐに進行しましたが、よく使われる不斉配位子であるBINAP系配位子や先行研究で用いたNHC配位子などでは十分なエナンチオ選択性を達成できず、低から中程度のeeのデータが積み重なるだけでした。その中で、たまたま研究室にあったHayashiジエン配位子(R,R)-Ph-bodを使ってみたところ、明らかに他の配位子とはエナンチオ選択性に違いが見られました。最終的には当時B4の塩澤さん(現M2)の丁寧な条件検討のおかげで、非常に高い収率とeeを実現できました。配位子合成の原料が不安定であったり、在庫が欠品してしまったりと本筋ではないハプニングも色々ありましたが、そこに関しても塩澤さんが粘り強く対応してくれたお陰で、質の高いデータを揃えることができまました。本当に感謝しかありません。

Q4. 将来は化学とどう関わっていきたいですか?

これからの時代の有機化学は、様々な科学との融合研究が不可欠だと考えています。特に近年では機械学習などのコンピューター関連技術との融合が増えてきており、有機化学も新たな局面を迎えつつあると感じています。私自身も自分が今まで培ってきた反応開発に関する知識と知恵に加え、計算科学や情報科学を最大限に活用し、誰も想像しないような新反応の開発をしたいと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後まで読んでいただきありがとうございます。現在は北海道大学に場所を変え、博士研究員として新たな研究にチャレンジしています。研究者としてまだまだ新米ですので、学会等でお会いできる機会がありましたら是非お声掛けください。
最後になりましたが、本研究に関して多くのご指導をしていただきました柴田高範教授、Kyalo Stephen Kanyiva准教授、CPL測定に関して共同研究をしてくださった今井喜胤教授(近畿大学)にこの場を借りて感謝申し上げます。また、プロジェクトを一緒に進めてくださった塩澤さんをはじめ、柴田研究室の学生の皆様や協力してくださった方々にも感謝いたします。

研究者の略歴

左から:柴田高範教授、塩澤夏海(当時M1)、髙野秀明(当時D3)

名前:髙野 秀明
研究テーマ: AFIR法を用いた新規反応開発
2015年3月 早稲田大学 先進理工学部 化学・生命化学科 卒業
2017年3月 早稲田大学大学院 先進理工学研究科 化学・生命化学専攻 博士前期課程 修了 (柴田研究室)
2018年4月-2019年3月 日本学術振興会 若手研究者海外挑戦プログラム (受入研究者 Dr. Robert J. Phipps, University of Cambridge)
2018年4月-2020年3月 日本学術振興会 特別研究員(DC2)
2020年3月 早稲田大学大学院 先進理工学研究科 化学・生命化学専攻 博士後期課程 修了 (柴田研究室)
2020年3月 博士(理学)取得
2020年4月~ 北海道大学 化学反応創成研究拠点(ICReDD) 博士研究員

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 今年は Carl Bosch 生誕 150周年です
  2. 太陽電池を1から作ろう:色素増感太陽電池 実験キット
  3. 自宅で抽出実験も?自宅で使える理化学ガラス「リカシツ」
  4. 外部の大学院に進学するメリット3選
  5. 有機合成化学協会誌2024年2月号:タンデムボラFriedel-…
  6. フラーレンの中には核反応を早くする不思議空間がある
  7. Brønsted酸触媒とヒドロシランによるシラFriedel-C…
  8. ゲルセジン型アルカロイドの網羅的全合成

注目情報

ピックアップ記事

  1. ティフェノー・デミヤノフ転位 Tiffeneau-Demjanov Rearrangement
  2. メトキシ基で転位をコントロール!Niduterpenoid Bの全合成
  3. Reaxys PhD Prize 2016ファイナリスト発表!
  4. 北大触媒化研、水素製造コスト2―3割安く
  5. 図に最適なフォントは何か?
  6. ローゼンムント還元 Rosenmund Reduction
  7. 世界初 もみ殻からLEDを開発!~オレンジ色に発光するシリコン量子ドットLED~
  8. 文具に凝るといふことを化学者もしてみむとてするなり : ② 「ポスト・イット アドバンス」
  9. Carl Boschの人生 その6
  10. \脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー