[スポンサーリンク]

化学者のつぶやき

シグマトロピー転位によるキラルα-アリールカルボニルの合成法

[スポンサーリンク]

アリールヨーダンとキラルオキサゾリンを用いた[3,3]-シグマトロピー転位によるジアステレオ選択的α-アリールイミン合成法が開発された。生成物はキラルα-アリールカルボニルへ誘導できる。

不斉α-アリール化

キラルα-アリールカルボニル化合物は医薬品や生物活性分子として数多く報告されている。代表的な合成法として、キラルPd触媒存在下、ハロアレーンを用いるカルボニル化合物の不斉α-アリール化が知られる(図 1A)[1]。本手法は強塩基性条件を必要とし、しばしば生成物のラセミ化が起こるため、本手法とは異なるα-アリールカルボニルの合成法開発の意義は高い。

一方で、近年[3,3]-シグマトロピー転位を利用したヨードソベンゼン類のortho位官能基化の報告が増えている[2]。1988年に、OhらはLewis酸存在下ヨードソベンゼンとアリルシランが反応し、アリルフェニルヨードニウム中間体の[3,3]-シグマトロピー転位を経てortho-アリルヨードベンゼンが生成することを報告した(図 1B)。この報告に端を発し、現在ではジアセトキシヨードアレーンに対し、アリルシラン、1,3-ジカルボニル類、2-ナフトール、α-スタニルアルキルニトリルやジフルオロシリルエノールエーテルを求核剤とするortho位官能基化が可能となった。このように、本手法で適用可能な求核剤がいくつか見いだされてきたが、未だ不斉反応へは展開できていなかった。

本論文著者である浙江師範大学のPengらは以前、求核剤に単純なアルキルニトリルを用いて、同様の[3,3]-シグマトロピー転位を経るアリールスルホキシドのortho-アルキル化(ニトリルのα-アリール化)を報告した(図 1C)[3]。本手法では、Tf2O存在下、ニトリルがアリールスルホキシドと反応してイミンスルホニウム中間体を形成する。その後、この中間体を塩基が脱プロトン化して生じたエテンイミン中間体の[3,3]-シグマトロピー転位が進行する。今回、著者らはアルキルニトリルと類似の反応性を期待してオキサゾリンを求核剤に用いてジアセトキシヨードアレーンとの[3,3]-シグマトロピー転位によるα-アリールオキサゾリン合成に成功した(図1D)。本手法でキラルオキサゾリンを適用すればジアステレオ選択的にオキサゾリンをα-アリール化ができる。

図1. (A) 不斉α-アリール化 (B) [3,3]-シグマトロピー転位 (C) 著者が報告した以前の文献 (D) 今回の反応

Asymmetric Iodonio-[3,3]-Sigmatropic Rearrangement to Access Chiral α‐Aryl Carbonyl Compounds

Tian, J.; Luo, F.; Zhang, Q.; Liang, Y.; Li, D.; Zhan, Y.; Kong, L.; Wang, Z.-X.; Peng, B. J. Am. Chem. Soc. 2020, 142, 6884–6890.

DOI: 10.1021/jacs.0c00783

論文著者の紹介

研究者:Bo Peng    彭勃

研究者の経歴:
–2004 BSc, Department of Chemistry, Nanjing University of Science and Technology
2004–2010 Ph.D, Department of Chemistry, Dalian University of Technology (DUT), China (Prof. Ming Bao)
2011–2013 Postdoc, Max-Planck-Institut für Kohlenforschung, Germany (Prof. Nuno Maulide)
2013–2014 Assistant Professor, University of Illinois at Urbana-Champaign, USA (Prof. Scott E. Denmark)
2015–  Distinguished Professor, Zhejiang Normal University, China

研究内容:医薬品中間体と機能性材料における有機反応、フッ素化合物の官能基変換

研究者:Zhi-Xiang Wang       汪志祥

研究者の経歴:
–1993 BSc, Computational Chemistry, University of Science and Technology of China
1993–1996 Ph.D, Computational Chemistry, Beijing Normal University, China
1996–1998 Postdoc, Graduate School of the Chinese Academy of Sciences, China (Prof. Mingbao Huang)
1998–2003 Postdoc, University of Georgia, USA (Prof. Paul von Ragué Schleyer)
2003–2007 Project scientist, Genome Center, University of California, Davis, USA (Prof. Yong Duan)
2007–  Professor, College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences

研究内容:触媒に関する計算化学、分子力学、計算化学による化学結合則

論文の概要

本手法は、TMSOTfでジアセトキシヨードアレーン1を活性化し、その後オキサゾリン2と2-メチルピリジンを加えることで[3,3]-シグマトロピー転位が進行し、ジアステレオ選択的にα-アリールオキサゾリン3が生成する(図2A)。オキサゾリンα位に様々なアルキル置換基をもつ基質が適用でき、臭素、ニトリルやトシルアミドをもつ化合物でも高ジアステレオ選択的に3を与える(3a–3c)。またアリールヨーダンにはメチル(3d)、エステル(3e)、ハロゲン(3f)を有するものやチエニルヨーダン(3g)が適用できる。また、オキサゾリン部位は酸性条件下容易に官能基変換でき、Pengらは実際にキラルα-アリールカルボン酸へと導くことで合成有用性を実証した(詳細は論文参照)。

本反応は以下の機構で進行する(図 2B)。まず1がTMSOTfで活性化されたのち、オキサゾリン2がヨウ素原子に求核攻撃しイミニウム中間体Iを形成する。続いてメチルピリジンがIを脱プロトン化して生成するエナミン中間体IIが[3,3]-シグマトロピー転位し、α-アリールオキサゾリン3が得られる。Pengらは、DFT計算を用いて、本反応のジアステレオ選択性は脱プロトン化の際に決定されると結論づけた(図 2C)。すなわち、脱プロトン化の遷移状態TS2aaのように、ヨードアレーン部位と塩基の2-メチルピリジン間のπ–π相互作用が働き、かつオキサゾリンの置換基とヨードアレーン間の立体障害が最も小さい遷移状態を経ることでジアステレオ選択性が決まることがわかった(詳細は論文Figure 1参照)。

図2. (A) 基質適用範囲 (B) 推定反応機構 (C) DFT計算によるジアステレオ選択性の解明研究

以上、アリールヨーダンとキラルオキサゾリンとの[3,3]-シグマトロピー転位によるジアステレオ選択的α-アリールオキサゾリン合成法が開発された。この反応は、遷移金属触媒を用いたα-アリール化では困難なヨウ化アリールの導入ができるため、全合成などへの応用も期待できる。

参考文献

  1. Taylor, A. M.; Altman, R. A.; Buchwald, S. L. Palladium-Catalyzed Enantioselective α-Arylation and α-Vinylation of Oxindoles Facilitated by an Axially Chiral P-Stereogenic Ligand. J. Am. Chem. Soc. 2009, 131, 9900–9901. DOI: 1021/ja903880q
  2. (a) Chen, W. W.; Cuenca, A. B.; Shafir, A. The Power of Iodane-Guided C–H Coupling: A Group Transfer Strategy in Which a Halogen Works for Its Money. Angew. Chem., Int. Ed. 2019, Accepted Artiles. DOI: 1002/anie.201908418 (b) Lee, K.; Kim, D. Y.; Oh, D. Y. Reaction of Allyltrimethylsilane with an Aromatic Compound Using Hypervalent Organoiodine Compound: A New Allylation of Aromatic Compounds. Tetrahedron Lett. 1988, 29,667–668. DOI: 10.1016/S0040-4039(00)80178-1 (c) Wu, Y.; Arenas, I.; Broomfield, L. M.; Martin, E.; Shafir, A. Hypervalent Activation as a Key Step for Dehydrogenative ortho C–C Coupling of Iodoarenes. Chem. Eur. J. 2015, 21, 18779–18784. DOI: 10.1002/chem.201503987 (d) Hori, M.; Guo, J.-D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Sigmatropic Rearrangements of Hypervalent‐Iodine‐Tethered Intermediates for the Synthesis of Biaryls. Angew. Chem., Int. Ed. 2018, 57, 4663–4667. DOI: 10.1002/anie.201801132 (e) Tian, J.; Luo, F.; Zhang, C.; Huang, X.; Zhang, Y.; Zhang, L.; Kong, L.; Hu, X.; Wang, Z.-X.; Peng, B. Selective ortho C–H Cyanoalkylation of (Diacetoxyiodo)arenes through [3,3]-Sigmatropic Rearrangement. Angew.Chem., Int. Ed. 2018, 57, 9078–9082. DOI: 10.1002/anie.201803455 (f) Huang, X.; Zhang, Y.; Zhang, C.; Zhang, L.; Xu, Y.; Kong, L.; Wang, Z.-X.; Peng, B. Angew. Chem., Int. Ed. 2019, 58, 5956–5961. DOI: 10.1002/anie.201900745
  3. Shang, L.; Chang, Y.; Luo, F.; He, J.-N.; Huang, X.; Zhang, L.; Kong, L.; Li, K.; Peng, B. Redox-Neutral α-Arylation of Alkyl Nitriles with Aryl Sulfoxides: A Rapid Electrophilic Rearrangement. J. Am. Chem. Soc. 2017, 139, 4211− DOI: 10.1021/jacs.7b00969
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. カゴ型シルセスキオキサン「ヤヌスキューブ」の合成と構造決定
  2. 生物に打ち勝つ人工合成?アルカロイド骨格多様化合成法の開発
  3. 化学工場災害事例 ~爆発事故に学ぶ~
  4. 二核錯体による窒素固定~世界初の触媒作用実現~
  5. 【21卒イベント】「化学系学生のための企業研究セミナー」 大阪1…
  6. 専門用語豊富なシソーラス付き辞書!JAICI Science D…
  7. 付設展示会へ行こう!ーWiley編
  8. 水素社会~アンモニアボラン~

注目情報

ピックアップ記事

  1. 中分子創薬に挑む中外製薬
  2. シンポジウム・向山先生の思い出を語る会
  3. 液相における粒子間水素移動によって加速されるアルカンとベンゼンの脱水素カップリング反応
  4. 導電性高分子の基礎、技術開発とエネルギーデバイスへの応用【終了】
  5. 第97回―「イメージング・センシングに応用可能な炭素材料の開発」Julie MacPherson教授
  6. 寺崎 治 Osamu Terasaki
  7. 「消えるタトゥー」でヘンなカユミ
  8. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1
  9. 花粉症 花粉飛散量、過去最悪? 妙案なく、つらい春
  10. 田辺製薬と三菱ウェルファーマが10月1日に合併へ‐新社名は「田辺三菱製薬」

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP