[スポンサーリンク]

化学者のつぶやき

シグマトロピー転位によるキラルα-アリールカルボニルの合成法

[スポンサーリンク]

アリールヨーダンとキラルオキサゾリンを用いた[3,3]-シグマトロピー転位によるジアステレオ選択的α-アリールイミン合成法が開発された。生成物はキラルα-アリールカルボニルへ誘導できる。

不斉α-アリール化

キラルα-アリールカルボニル化合物は医薬品や生物活性分子として数多く報告されている。代表的な合成法として、キラルPd触媒存在下、ハロアレーンを用いるカルボニル化合物の不斉α-アリール化が知られる(図 1A)[1]。本手法は強塩基性条件を必要とし、しばしば生成物のラセミ化が起こるため、本手法とは異なるα-アリールカルボニルの合成法開発の意義は高い。

一方で、近年[3,3]-シグマトロピー転位を利用したヨードソベンゼン類のortho位官能基化の報告が増えている[2]。1988年に、OhらはLewis酸存在下ヨードソベンゼンとアリルシランが反応し、アリルフェニルヨードニウム中間体の[3,3]-シグマトロピー転位を経てortho-アリルヨードベンゼンが生成することを報告した(図 1B)。この報告に端を発し、現在ではジアセトキシヨードアレーンに対し、アリルシラン、1,3-ジカルボニル類、2-ナフトール、α-スタニルアルキルニトリルやジフルオロシリルエノールエーテルを求核剤とするortho位官能基化が可能となった。このように、本手法で適用可能な求核剤がいくつか見いだされてきたが、未だ不斉反応へは展開できていなかった。

本論文著者である浙江師範大学のPengらは以前、求核剤に単純なアルキルニトリルを用いて、同様の[3,3]-シグマトロピー転位を経るアリールスルホキシドのortho-アルキル化(ニトリルのα-アリール化)を報告した(図 1C)[3]。本手法では、Tf2O存在下、ニトリルがアリールスルホキシドと反応してイミンスルホニウム中間体を形成する。その後、この中間体を塩基が脱プロトン化して生じたエテンイミン中間体の[3,3]-シグマトロピー転位が進行する。今回、著者らはアルキルニトリルと類似の反応性を期待してオキサゾリンを求核剤に用いてジアセトキシヨードアレーンとの[3,3]-シグマトロピー転位によるα-アリールオキサゾリン合成に成功した(図1D)。本手法でキラルオキサゾリンを適用すればジアステレオ選択的にオキサゾリンをα-アリール化ができる。

図1. (A) 不斉α-アリール化 (B) [3,3]-シグマトロピー転位 (C) 著者が報告した以前の文献 (D) 今回の反応

Asymmetric Iodonio-[3,3]-Sigmatropic Rearrangement to Access Chiral α‐Aryl Carbonyl Compounds

Tian, J.; Luo, F.; Zhang, Q.; Liang, Y.; Li, D.; Zhan, Y.; Kong, L.; Wang, Z.-X.; Peng, B. J. Am. Chem. Soc. 2020, 142, 6884–6890.

DOI: 10.1021/jacs.0c00783

論文著者の紹介

研究者:Bo Peng    彭勃

研究者の経歴:
–2004 BSc, Department of Chemistry, Nanjing University of Science and Technology
2004–2010 Ph.D, Department of Chemistry, Dalian University of Technology (DUT), China (Prof. Ming Bao)
2011–2013 Postdoc, Max-Planck-Institut für Kohlenforschung, Germany (Prof. Nuno Maulide)
2013–2014 Assistant Professor, University of Illinois at Urbana-Champaign, USA (Prof. Scott E. Denmark)
2015–  Distinguished Professor, Zhejiang Normal University, China

研究内容:医薬品中間体と機能性材料における有機反応、フッ素化合物の官能基変換

研究者:Zhi-Xiang Wang       汪志祥

研究者の経歴:
–1993 BSc, Computational Chemistry, University of Science and Technology of China
1993–1996 Ph.D, Computational Chemistry, Beijing Normal University, China
1996–1998 Postdoc, Graduate School of the Chinese Academy of Sciences, China (Prof. Mingbao Huang)
1998–2003 Postdoc, University of Georgia, USA (Prof. Paul von Ragué Schleyer)
2003–2007 Project scientist, Genome Center, University of California, Davis, USA (Prof. Yong Duan)
2007–  Professor, College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences

研究内容:触媒に関する計算化学、分子力学、計算化学による化学結合則

論文の概要

本手法は、TMSOTfでジアセトキシヨードアレーン1を活性化し、その後オキサゾリン2と2-メチルピリジンを加えることで[3,3]-シグマトロピー転位が進行し、ジアステレオ選択的にα-アリールオキサゾリン3が生成する(図2A)。オキサゾリンα位に様々なアルキル置換基をもつ基質が適用でき、臭素、ニトリルやトシルアミドをもつ化合物でも高ジアステレオ選択的に3を与える(3a–3c)。またアリールヨーダンにはメチル(3d)、エステル(3e)、ハロゲン(3f)を有するものやチエニルヨーダン(3g)が適用できる。また、オキサゾリン部位は酸性条件下容易に官能基変換でき、Pengらは実際にキラルα-アリールカルボン酸へと導くことで合成有用性を実証した(詳細は論文参照)。

本反応は以下の機構で進行する(図 2B)。まず1がTMSOTfで活性化されたのち、オキサゾリン2がヨウ素原子に求核攻撃しイミニウム中間体Iを形成する。続いてメチルピリジンがIを脱プロトン化して生成するエナミン中間体IIが[3,3]-シグマトロピー転位し、α-アリールオキサゾリン3が得られる。Pengらは、DFT計算を用いて、本反応のジアステレオ選択性は脱プロトン化の際に決定されると結論づけた(図 2C)。すなわち、脱プロトン化の遷移状態TS2aaのように、ヨードアレーン部位と塩基の2-メチルピリジン間のπ–π相互作用が働き、かつオキサゾリンの置換基とヨードアレーン間の立体障害が最も小さい遷移状態を経ることでジアステレオ選択性が決まることがわかった(詳細は論文Figure 1参照)。

図2. (A) 基質適用範囲 (B) 推定反応機構 (C) DFT計算によるジアステレオ選択性の解明研究

以上、アリールヨーダンとキラルオキサゾリンとの[3,3]-シグマトロピー転位によるジアステレオ選択的α-アリールオキサゾリン合成法が開発された。この反応は、遷移金属触媒を用いたα-アリール化では困難なヨウ化アリールの導入ができるため、全合成などへの応用も期待できる。

参考文献

  1. Taylor, A. M.; Altman, R. A.; Buchwald, S. L. Palladium-Catalyzed Enantioselective α-Arylation and α-Vinylation of Oxindoles Facilitated by an Axially Chiral P-Stereogenic Ligand. J. Am. Chem. Soc. 2009, 131, 9900–9901. DOI: 1021/ja903880q
  2. (a) Chen, W. W.; Cuenca, A. B.; Shafir, A. The Power of Iodane-Guided C–H Coupling: A Group Transfer Strategy in Which a Halogen Works for Its Money. Angew. Chem., Int. Ed. 2019, Accepted Artiles. DOI: 1002/anie.201908418 (b) Lee, K.; Kim, D. Y.; Oh, D. Y. Reaction of Allyltrimethylsilane with an Aromatic Compound Using Hypervalent Organoiodine Compound: A New Allylation of Aromatic Compounds. Tetrahedron Lett. 1988, 29,667–668. DOI: 10.1016/S0040-4039(00)80178-1 (c) Wu, Y.; Arenas, I.; Broomfield, L. M.; Martin, E.; Shafir, A. Hypervalent Activation as a Key Step for Dehydrogenative ortho C–C Coupling of Iodoarenes. Chem. Eur. J. 2015, 21, 18779–18784. DOI: 10.1002/chem.201503987 (d) Hori, M.; Guo, J.-D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Sigmatropic Rearrangements of Hypervalent‐Iodine‐Tethered Intermediates for the Synthesis of Biaryls. Angew. Chem., Int. Ed. 2018, 57, 4663–4667. DOI: 10.1002/anie.201801132 (e) Tian, J.; Luo, F.; Zhang, C.; Huang, X.; Zhang, Y.; Zhang, L.; Kong, L.; Hu, X.; Wang, Z.-X.; Peng, B. Selective ortho C–H Cyanoalkylation of (Diacetoxyiodo)arenes through [3,3]-Sigmatropic Rearrangement. Angew.Chem., Int. Ed. 2018, 57, 9078–9082. DOI: 10.1002/anie.201803455 (f) Huang, X.; Zhang, Y.; Zhang, C.; Zhang, L.; Xu, Y.; Kong, L.; Wang, Z.-X.; Peng, B. Angew. Chem., Int. Ed. 2019, 58, 5956–5961. DOI: 10.1002/anie.201900745
  3. Shang, L.; Chang, Y.; Luo, F.; He, J.-N.; Huang, X.; Zhang, L.; Kong, L.; Li, K.; Peng, B. Redox-Neutral α-Arylation of Alkyl Nitriles with Aryl Sulfoxides: A Rapid Electrophilic Rearrangement. J. Am. Chem. Soc. 2017, 139, 4211− DOI: 10.1021/jacs.7b00969
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 分子の対称性が高いってどういうこと ?【化学者だって数学するっつ…
  2. 研究室でDIY!~割れないマニホールドをつくろう~
  3. 学術論文を書くときは句動詞に注意
  4. 紹介会社を使った就活
  5. 公募開始!2020 CAS Future Leaders プログ…
  6. ノーベル賞受賞者と語り合おう!「第16回HOPEミーティング」参…
  7. 第47回ケムステVシンポ「マイクロフローケミストリー」を開催しま…
  8. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part…

注目情報

ピックアップ記事

  1. DNAに人工塩基対を組み入れる
  2. 安定な環状ケトンのC–C結合を組み替える
  3. 【第11回Vシンポ特別企画】講師紹介②:前田 勝浩 先生
  4. ポンコツ博士の海外奮闘録 〜留学サバイバルTips〜
  5. 柴崎・東大教授が英化学会メダル受賞
  6. マイクロリアクター徹底活用セミナー【終了】
  7. 2009年10月人気化学書籍ランキング
  8. 最新の産学コラボ研究論文
  9. ボールミルを用いた、溶媒を使わないペースト状 Grignard 試薬の合成
  10. 1,3-ジヨード-5,5-ジメチルヒダントイン:1,3-Diiodo-5,5-dimethylhydantoin

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー