[スポンサーリンク]

化学者のつぶやき

ボロン酸エステルをモノ・ジフルオロメチル基に変える

[スポンサーリンク]

ボロン酸エステルを原料としたモノ、ジフルオロメチル化反応が開発された。立体特異的に進行する本反応では、キラルなボロン酸エステルを用いることでキラルなフルオロメチル化合物が得られる。

直接的モノ、ジフルオロメチル化反応

フルオロメチル基(CFx基)は代謝安定性、結合親和性などに優れており、農薬や医薬品に多く組み込まれている[1]。その中でも最も人気が高いものはトリフルオロメチル基(CF3基)である。CF3基の直接導入法は多岐に渡り、信頼性の高い反応化剤が開発・市販化されている(図1A)[2]。一方でCF3基に比べ、モノフルオロメチル基(CH2F基)およびジフルオロメチル基(CF2H基)の直接導入法の開発は発展途上であり、効果的な反応剤も少ない[3]。sp2炭素への同官能基の導入はクロスカップリング反応が主である。
例えば、HartwigらはTMSジフルオロメタンをCF2H化剤としたヨウ化銅による、芳香族ヨウ化物のジフルオロメチル化反応を報告している(図1B)[4]。sp3炭素に対しては、アルケンに対するラジカル反応がほとんどであり、不斉反応への展開は困難である。数少ない不斉反応の例の1つとして、2017年、Liuらはアルケンの不斉ラジカルアミノジフルオロメチル化反応を報告した(図1C)[5]。ジフルオロメチルスルホニルクロリドをCF2H化剤とし、Cu触媒存在下キラルリン酸L1を添加することでエナンチオ選択的にジフルオロメチル化体が得られる。
今回ブリストル大学のAggarwal教授らはボロン酸エステルを出発物質とした、新たなCH2F基およびCF2H基の導入法を開発した(図1D)。すなわち、ボロン酸エステルに対して、安価に購入可能なフルオロヨードメタンより調製したフルオロカルベノイドを作用させ、フルオロボロン酸エステルを合成する(マッテソン型増炭反応)。続いてボロン酸エステル部位をプロトン化/フッ素化することでモノおよびジフルオロメチル化された化合物が得られる(図1D)。反応は立体特異的に進行するため、キラルボロン酸エステルを用いることで、キラルフルオロメチル化合物が得られる。

図1 (A)CF3化剤 (B) カップリングによるジフルオロメチル化 (C) エナンチオ選択的アミノジフルオロメチル化 (D) 今回の反応

 

“Divergent, Stereospecific Mono- and Difluoromethylation of Boronic Esters”

Fasano, V.; Winter, N.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 8502-8506.

DOI: 10.1002/anie.202002246

論文著者の紹介

研究者:Varinder K. Aggarwal

研究者の経歴:

1980-1983 BSc, University of Cambridge, UK
1983-1986 Ph.D, University of Cambridge, UK (Prof. Stuart Warren)
1986-1988 Postdoc, Columbia University, USA (Prof. Gilbert Stork)
1988-1991 Lecturer in Chemistry, University of Bath, UK
1991-1995 Lecturer in Chemistry, University of Sheffield, UK
1995-1997 Reader in Chemistry, University of Sheffield, UK
1997-2000 Professor in Chemistry, University of Sheffield, UK
2000- Professor in Synthetic Chemistry, University of Bristol, UK
2019- Alfred Capper Pass Professor of Chemistry, University of Bristol, UK

研究内容:リチオ化に続くホウ素化、遷移金属クロスカップリング反応、ボロネートを求核剤とした反応の開発、Prostanoidsの全合成

論文の概要

具体的には、種々のボロン酸エステルと、フルオロヨードメタンとLDAによって調製したフルオロカルベノイドを反応させ一炭素増炭した中間体3とする。その後、触媒量のTFA存在下4-t-Buカテコールによる3のプロト脱ホウ素化が進行し、モノフルオロメチル化体4を与える(図2A)。また3は、TFA存在下、硝酸銀、セレクトフルオロを用いたフルオロ脱ホウ素化によりジフルオロメチル化体5を与える。本手法の鍵は遷移状態2における脱離基の選択である。この脱離基には1)2から3への1.2-転移を促進する、2)フルオロカルベノイドを安定化させない、3)フルオロカルベノイドからLiFの脱離によって生じるカルベンを安定化させないなどの条件を満たしている必要がある。
そこでAggarwal教授らはモデル基質として、フッ素の置換数を変えたブロモメタンカルボアニオンとMeBpinを用いたDFT計算を行った(図2B)。その結果、フッ素が1置換若しくは置換していないものではボロネートIが生成した後、ボロネートIの解離によるカルボアニオンIIIの生成よりエネルギーの小さいメチル基の1,2-転移が進行することがわかった。また、カルベン生成に対する各脱離基のDFT計算の結果、ヨウ素を脱離基として用いた際、最もカルベン生成のギブズエネルギーが高かったことから、著者らはヨウ素が最も適した脱離基であると結論づけた(詳細は論文Scheme 2C参照)。
本手法は種々の置換基をもつ芳香族化合物(4a–4c, 5a–5c)に加え、環状アミン(4d and 5d)や2級ボロン酸(4e and 5e)で適用でき、対応するモノおよびジフルオロメチル化体を与えた(図2C)。さらに反応は立体特異的に進行するため、キラルな2級ボロン酸エステルからは、高い鏡像体比を保持した4e5eを与えた。

図2 (A) 今回の反応 (B) DFT計算(一部論文より引用) (C) 基質適用範囲

以上、ボロン酸エステルのモノフルオロメチルおよびジフルオロメチル化反応が開発された。これらのフルオロメチル化反応が今後の創薬化学の発展につながることが期待される。

参考文献

  1. (a) Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition, Science 2007, 317, 1881–1886. DOI: 1126/science.1131943. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. DOI: 10.1039/B610213C
  2. Ma, J. -A.; Cahard, D. Strategies for Nucleophilic, Electrophilic, and Radical Trifluoromethylations. J. Fluorine Chem. 2007, 128, 975–996. DOI: 10.1016/j.jfluchem.2007.04.026
  3. (a) Rong, J.;Ni, C.; Hu, J. Metal-Catalyzed Direct Difluoromethylation Reactions. Asian J. Org. Chem. 2017, 6, 139–152. DOI: 1002/ajoc.201600509. (b) Hu, J.; Zhang, W.; Wang, F. Selective Difluoromethylation and Monofluoromethylation Reactions. Chem. Commun. 2009, 7465–7478. DOI: 10.1039/B916463D
  4. Fier, P. S.; Hartwig, J. F. Copper-Mediated Difluoromethylation of Aryl and Vinyl Iodides. J. Am. Chem. Soc. 2012, 12, 5524–5527. DOI: 10.1021/ja301013h
  5. Lin, J. -S.; Wang, F. -L.; Dong, X. -Y.; He, W. -W.; Yuan, Y.; Chen, S.; Liu, X. -Y. Catalytic Asymmetric Radical Aminoperfluoroalkylation and Aminodifluoromethylation of Alkenes to Versatile Enantioenriched-Fluoroalkyl Amines. Nat. Commun. 2017, 8, 14841–14851. DOI: 10.1038/ncomms14841
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 活性酸素を効率よく安定に生成できる分子光触媒 〜ポルフィリンと分…
  2. 青いセレンディピティー
  3. 深海の美しい怪物、魚竜
  4. 美術品保存と高分子
  5. 中性ケイ素触媒でヒドロシリル化
  6. 電子デバイス製造技術 ーChemical Times特集より
  7. 3Mとはどんな会社? 2021年版
  8. ジアニオンで芳香族化!?ラジアレンの大改革(開殻)

注目情報

ピックアップ記事

  1. 高純度フッ化水素酸のあれこれまとめ その2
  2. マテリアルズ・インフォマティクス活用検討・テーマ発掘の進め方 -社内促進でつまずやすいポイントや解決策を解説-
  3. 向山酸化 Mukaiyama Oxidation
  4. 原油高騰 日本企業直撃の恐れ
  5. DNA origami入門 ―基礎から学ぶDNAナノ構造体の設計技法―
  6. 化学小説まとめ
  7. 第16回 教科書が変わる心躍る研究を目指すー野崎京子教授
  8. ダンハイザー環形成反応 Danheiser Annulation
  9. ロジャー・チェン Roger Y. Tsien
  10. 製薬産業の最前線バイオベンチャーを訪ねてみよう! ?シリコンバレーバイオ合宿?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー