[スポンサーリンク]

化学者のつぶやき

なぜ傷ついたマジックマッシュルームは青くなるの?

[スポンサーリンク]

60年以上不明だったマジックマッシュルームの青色化メカニズムが解明された。青色色素の構造と生合成経路が初めて明かされた。

マジックマッシュルームと青色化

ミナミシビレダケ(Psilocybe cubensis)をはじめとするPsilocybe属のキノコは一般的にマジックマッシュルームと呼ばれ、向精神性をもつシロシビン(1)を含有する(図1A)。1は1958年に単離・構造決定されたトリプタミン骨格をもつアルカロイドである[1]。ヒトがマジックマッシュルームを摂取すると1の脱リン酸化が起こり、シロシン(2)が生成する。この2は5-ヒドロキシトリプタミン受容体のアゴニストとして働き、幻覚作用を引き起こす。
マジックマッシュルームの特徴の一つとして、傷つけられるとその箇所が青く変化することが挙げられる(図1B)。青色化の機構解明は長い間研究者の注目を集めている(図1C)[2]。1960年にLevineらは、ヨーロッパイガイ(Mytilus edulis)に含まれる酸化酵素を用いて2を酸化したところ、青色化することを報告した[2a]。その際に生成する青色化合物はキノイド構造をもつと推測した。Bocksらは1を酸化しても青色化が起こらないこと、青色化合物を還元すると退色することを報告している[2b]。また、HoritaとWeberは、哺乳類組織のホモジネートを用いることで2は即座に、1もゆっくりと青色化することを見いだした[2c]。哺乳類組織にはホスファターゼが含まれることから、青色化反応は1の脱リン酸化された2が酸化されることで起こることが示唆された。しかし、青色化合物の構造は明らかになっておらず、マジックマッシュルームの生体内での合成経路も解明されていない。

 今回、イェーナ大学のHoffmeisterらは、マジックマッシュルームの損傷時に産生する青色色素の構造決定および生合成経路の解明に成功した。その過程で、青色化機構で重要となる新しい酵素、ホスファターゼPsiPとオキシダーゼPsiLの同定にも成功した。

図1. (A) 青色化反応 (B) シロシビンとシロシンの構造 (C) 過去の青色化機構解明実験 (D) 本論文で明らかになった青色化機構

 

“Injury-Triggered Blueing Reactions of Psilocybe “Magic” Mushrooms”
Lenz, C.; Wick, J.; Braga, D.; García-Altares, M.; Lackner, G.; Hertweck, C.; Gressler, M.; Hoffmeister, D. Angew. Chem.,Int. Ed. 2020, 59, 1450–1454
DOI: 10.1002/anie.201910175

論文著者の紹介

研究者:Dirk Hoffmeister
研究者の経歴:
1998 Diploma in Biology, University of Tübingen, Germany
2002 Ph.D., Faculty of Chemistry and Pharmacy, University of Freiburg, Germany (Prof. Andreas Bechthold)
2002–2004 Postdoc, University of Wisconsin, Madison, USA (Prof. Jon S. Thorson)
2004–2007 Research assistant, Institute for Pharmacy, University of Freiburg, Germany
2008 Habilitation in Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany
2007–2009 Assistant Professor, University of Minnesota, Twin Cities, USA
2009–2014 Associate Professor, Department of Pharmaceutical Biology, University of Jena, and Head of the Associated Department Pharmaceutical Biology, Hans Knöll Institute, Germany
2014– Professor, University of Jena and Hans Knöll Institute, Germany
研究内容:真菌や担子菌類の二次代謝産物の生化学と遺伝学、微生物の非リボソームペプチド合成酵素研究

論文の概要

著者らはまず、シロシビン(1)からシロシン(2)に導くホスファターゼと、2から青色色素を生成するためのオキシダーゼを同定した。すなわち、ミナミシビレタケから抽出したタンパク質を種々のクロマトグラフィーで精製した。目的の酵素は4-ニトロフェニル二水素リン酸もしくはシリンガルダジンで呈色し検出した。続くペプチドマスフィンガープリンティング法*によりホスファターゼPsiPとラッカーゼPsiLが同定された。PsiLはマルチ銅オキシダーゼであり、標的から一電子除去する触媒として働く。また、これらの酵素は細胞外またはリソソームに局在していることも明らかとなった。
続いて、2を塩化鉄(III)で酸化したモデル反応のマススペクトルによる分析、および青色色素のIRスペクトルから青色化合物の構造は5であると決定した。また、自動酸化条件(西洋ワサビペルオキシダーゼ/H2O2)による2の酸化反応のin situ 13C NMR測定により2の酸化的カップリング反応の機構を解析した(図2A)。その結果より、以下の青色化機構を提唱した(図2B)。1がPsiPにより脱リン酸化し2を生成する。得られた2はPsiLによって酸化され、フェノキシラジカル3を経由してC5位でカップリングし、二量体4を形成する。4は無色であるロイコ体だが、キノイド構造5をとることで青く発色する。また、マジックマッシュルームが産生する青色化合物は単一ではなく、2がさらに重合することで得られる無色の重合体6がキノイド構造に変換した7の不均一混合物である。
以上、傷ついたマジックマッシュルームが青色化する生体内の機構が解明された。今後はこの構造決定された青色化合物の生物学的役割解明が期待される。

図2. (A) 2のオリゴマー化におけるin situ 13C NMRスペクトル (B) 青色化の推定機構(論文より引用)

参考文献

  1. (a)Hofmann, A.; Heim, R.; Brack, A.; Kobel, H. Psilocybin, Ein Psychotroper Wirkstoff aus Dem Mexikanischen Rauschpilz Psilocybe Mexicana Experientia 1958, 14, 107–109. DOI: 10.1007/BF02159243 (b) Hofmann, A.; Frey, A.; Ott, H.; Petrzilka, T.; Troxler, F. Konstitutionsaufklärung und Synthese von Psilocybin. Experientia 1958, 14, 397–399. DOI: 10.1007/BF02160424 (c) Hofmann, A.; Heim, R.; Brack, A.; Kobel, H.; Frey, A.; Ott, H.; Petrzilka, T.; Troxler, F. Psilocybin und Psilocin, Zwei Psychotrope Wirkstoffe aus Mexikanischen Rauschpilzen. Helv. Chim. Acta 1959, 42, 1557–1572. DOI: 10.1002/hlca.19590420518
  2. (a)Blaschko, H.; Levine, W. G. Enzymic Oxidtion of Psilocine and Other Hydroxyindoles Biochem. Pharmacol. 1960, 3, 168–169. DOI: 10.1016/0006-2952(60)90036-8 (b) Bocks, S. M. Fungal Metabolism-IV. : The Oxidation of Psilocin by p-Diphenol Oxidase (Laccase). Phytochemistry1967, 6, 1629–1631. DOI: 10.1016/S0031-9422(00)82894-0 (c) Horita, A.; Weber, L. J. The Enzymic Dephosphorylation and Oxidation of Psilocybin and Pscilocin by Mammalian Tissue Homogenates. Biochem. Pharmacol. 1961, 7, 47–54. DOI: 10.1016/0006-2952(61)90124-1
  3. 関根太一, 加藤智啓. 「質量分析による蛋白質の同定」 http://igakukai.marianna-u.ac.jp/idaishi/www/322/11-32-2gijutsu.pdf (2020年1月20日閲覧)

用語説明

ペプチドマスフィンガープリンティング法[3]
未知タンパク質を同定する手法。単離したタンパク質をトリプシンなど配列特異性の高いプロテアーゼで切断する。切断されて得られた複数のペプチド鎖を質量分析し分子量を測定する。一方でin silicoでは、タンパク質データベース上のアミノ酸配列をトリプシンなどで切断すると理論上どのようなペプチド断片が得られるかを予測する。以上のように測定された分子量の実測値と、データーベースから得られた理論値をコンピューターで比較することで、統計的に最も一致率が高いタンパク質が示される。

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 今こそ天然物化学☆ 天然物化学談話会2021オンライン特別企画
  2. 夏休みのおでかけに最適! 化学にまつわる博物館5選 ~2024年…
  3. 論文投稿・出版に役立つ! 10の記事
  4. 化学英語論文/レポート執筆に役立つPCツール・決定版
  5. 第93回日本化学会付設展示会ケムステキャンペーン!Part I
  6. 【速報】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  7. 「産総研・触媒化学融合研究センター」ってどんな研究所?
  8. 次世代の産学連携拠点「三井リンクラボ柏の葉」を訪問しました!

注目情報

ピックアップ記事

  1. ゲヴァルト チオフェン合成 Gewald Thiophene Synthesis
  2. 記事評価&コメントウィジェットを導入
  3. 医薬品の品質管理ーChemical Times特集より
  4. アハメド・ズウェイル Ahmed H. Zewail
  5. ウラジミール・ゲヴォルギャン Vladimir Gevorgyan
  6. 日本プロセス化学会2019 ウインターシンポジウム
  7. 永木愛一郎 Aiichiro Nagaki
  8. 兄貴達と化学物質
  9. 卓上NMR
  10. 超音波有機合成 Sonication in Organic Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー