[スポンサーリンク]

スポットライトリサーチ

ペプチド鎖が精密に編み込まれた球殻状ナノカプセル〜24交点の絡まりトポロジーをもつ[6]カテナン分子の合成〜

[スポンサーリンク]

第253回のスポットライトリサーチは、東京大学大学院工学系研究科(藤田研究室)・猪俣 祐貴さんにお願いしました。

中空構造を有する美麗な自己組織化金属錯体を合成し、その機能開拓を追究する藤田研スタイルは、Chem-Stationではおなじみです。スポットライトリサーチにも以前登場いただいています(参考:幾何学の定理を活用したものづくり)。今回取り上げる研究は、配座柔軟なために組織化構造を組むことが困難とされるペプチドを配位子として用いることで、想像を絶する絡まり具合で中空錯体が得られたという成果です。一見してどのような様相をしているのか分からないほど複雑な構造ですが、一回の反応でこのような構造を与える化学的原理にはただただ敬服するばかりです。Nature Communications誌原著論文・プレスリリースに公開されています。

“A metal–peptide capsule by multiple ring threading”
Sawada, T.;  Inomata, Y.; Shimokawa, K.; Fujita, M. Nat. Commun. 2019, 10, 5687. doi:10.1038/s41467-019-13594-4

現場で研究を指揮された澤田知久 准教授から、猪俣さんについて以下のコメントを頂いています。心・技・体を兼ね備えた逸材のようで、驚きの成果をまだまだ生み出してくれそうです! それでは今回もインタビューをお楽しみください!

 この度は、スポットライトリサーチでのご紹介、誠にありがとうございます。猪俣君とは、学部4年の研究室配属以来、一緒に研究をしています。オリエンテーリングというスポーツではかつて学生チャンピオンに輝き、学業では東大の応用化学科でも相当な成績優秀者でした。研究においても切れ味を発揮し、卒論、修論、そして今回の研究内容と、どんどんステップアップしています。知力、体力、情熱の三拍子揃った逸材の猪俣君が生み出す研究を、どうぞお楽しみ下さい。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

柔軟な短鎖ペプチドと銀イオンの自己集合により、ペプチド鎖が絡み合ってできる球殻状のカプセルを合成しました。2016年ノーベル化学賞受賞分野でもある超分子化学において、インターロック分子の化学やカプセル・ケージの化学は数多くなされていますが、ある種の球状ウイルス殻で見られるような、1本のひもを編み物のように絡み合わせて中空をもつカプセルを構築することは難しく、人工系では未だに達成されていませんでした。
本研究では、両端にピリジル基を持つ柔軟な5残基ペプチド配位子 (= L) と直線二配位の銀イオン (= M) を溶媒中で混合すると、ペプチド配位子の単一配座への固定と銀イオンとの自己集合が同時に起こり、即座にカプセル状の自己集合体が精密に構築されることを見出しました。錯体の単結晶X線構造解析によって、M4L4組成の大員環6つが互いに絡まり合い、全体として立方体状になっている「[6]カテナン」構造であることが明らかになりました。分子構造中の絡まりの交点数を示す交差数は24に及び、これは人工系における現在の世界記録である12 (Angew. Chem. Int. Ed. 2016, 55, 4519.) を大幅に更新したことになります。構造のユニークさもさることながら、[6]カテナン中には約3200 Å3の巨大な空間が存在しており、配位結合の可逆性やペプチド鎖の柔軟性を利用して、いくつかのゲスト分子の共有結合的および非共有結合的な包接も可能であることが分かりました。

図1:交差数24をもつ[6]カテナンの単結晶構造

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

ペプチド配位子の設計です。上述の交差数12の先行研究において、プロリンに富む3残基配列から、四面体型に絡まった構造を与えることが分かっていました。しかし、より大きな構造を得るための設計指針は分かっておらず、プロリンを多く含む、様々な長さの配列を検討していくところから始まりました。学部4年生の卒論研究の段階で、3-アミノ安息香酸を中央に含むペプチドがπ-スタッキングや水素結合により絡まりを生じやすい一方、残基数の多い配位子は銀への配位によりM1L1組成の大員環を形成して閉じてしまうことが分かっていました(Chem. Lett. 2017, 46, 1119.)。そこで、M1L1で閉じないと考えられる4-6残基の長さの配列を探索しました。日々ペプチドの合成と錯形成を試しているうちに、ペプチドの配座が単一に収束した大きな構造体の生成を示唆するNMRスペクトルが得られ、そこからは結晶化を集中的に行いました。

思い入れは、やはり単結晶X線構造解析にあります。単結晶が生成する条件が見つからず苦労したのもありますが、カウンターアニオン・錯体濃度・貧溶媒の検討の末単結晶が生成しても、乾燥にとても弱く、回折点が中々出てくれない日々が続きました。結晶を素早く拾う腕を磨いて、ついに良好な回折点が得られた後の高揚感や、構造解析を行い画面に出てきた球殻状構造を見た瞬間の衝撃は今でも忘れられません。なお、自分が感動している間にわらわらと寄ってきた先輩・後輩達によって絡まりトポロジーはあっという間に明らかにされてしまいました(笑)。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

絡まりカプセルのカプセルとしての利用です。巨大な空孔がカプセル内に存在しているものの、明確な相互作用部位を内側に持たないため、様々なゲストの包接を試したものの何の包接挙動も溶液中で見えませんでした。そのため内部の修飾が必要であると考え、アミノ酸側鎖の変更を検討しました。まず、4残基目のアラニンを様々なアミノ鎖に変更しても[6]カテナン構造を同様に形成することを明らかにし、リジン残基への共有結合的ゲスト架橋およびウレア基を側鎖に有するシトルリンを組み込み包接を試したところ、NMRで包接挙動が見え、カプセルとしての利用が可能であることを示すことが出来ました。
なお、シトルリンは、電車内でたまたま目に入ってきた健康食品の広告にあった「スーパーアミノ酸」という文字列を何気なく検索していたら行き着いたアミノ酸であり、実験が進展するきっかけは思わぬところから降ってくるものだと実感しました。

図2:側鎖の改変による内部空間の修飾

Q4. 将来は化学とどう関わっていきたいですか?

ユニークな構造をもつモノつくりを通じて、そのモノにしか出来ないことを実現させていけたらと思っています。手を動かしてあれこれ試し次の戦略を考えていく過程が好きなので、基礎・応用どちらの立場で研究を行っていくにしても、自分が手を動かして出てきた結果を常に大切にしていきたいと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

自分の作った(扱っている)分子への愛着をもって化学を楽しむことが出来ると良いなと思っています。自分が博士後期課程に進学するきっかけの1つに、今回紹介した[6]カテナン分子に出会ったことが間違いなくあります。こんなユニークな分子に出会った以上、この分子を使って新しい知見をさらに見出したい、という思いが強いです。
また、研究以外のことも全力で楽しみながら追い求めていけると良いのではないかと思います。自分は、地図とコンパスを持って野山や公園などを駆け回るオリエンテーリングというスポーツを大学から続けていますが、研究に必要な体力の維持と同時に、目の前の課題(ポイント間の移動)を自分の持っている武器(ナビゲーション)をもとに解決するという、普段の研究の進め方と共通している要素も鍛えられていると常々感じます。

最後に、日々ご指導を賜っている藤田先生、澤田先生をはじめとする研究室の皆様、絡まりトポロジーの数学的表記に関するディスカッションに関して埼玉大学の下川先生、そして本研究を紹介する機会を下さったChem-Stationスタッフの皆様に感謝申し上げます。

研究者の略歴

名前:猪俣 祐貴(Yuuki, INOMATA)
所属:東京大学工学系研究科応用化学専攻 藤田研究室 博士後期課程 1年
研究テーマ:ペプチド–金属の自己集合に基づく絡まりを伴う機能性球殻構造の構築
略歴:
2017年3月  東京大学工学部応用化学科 卒業
2019年3月  東京大学工学系研究科応用化学専攻修士課程 修了
2019年4月〜 日本学術振興会特別研究員 DC1

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機合成化学協会誌2022年1月号:無保護ケチミン・高周期典型金…
  2. 多角的英語勉強法~オンライン英会話だけで満足していませんか~
  3. 中学入試における化学を調べてみた 2013
  4. タンパク質の定量法―紫外吸光法 Protein Quantifi…
  5. アメリカで Ph. D. を取る –研究室に訪問するの巻–
  6. 「不斉有機触媒の未踏課題に挑戦する」—マックス・プランク石炭化学…
  7. 徒然なるままにセンター試験を解いてみた
  8. ポンコツ博士の海外奮闘録⑫ 〜博士,今と昔を考える〜

注目情報

ピックアップ記事

  1. エッフェル塔
  2. 化学Webギャラリー@Flickr 【Part 3】
  3. 椎名マクロラクトン化 Shiina Macrolactonization
  4. アルバート・エッシェンモーザー Albert Eschenmoser
  5. ノバルティス、米カイロンを5000億円で完全子会社に
  6. 理系のための就活ガイド
  7. 触媒的プロリン酸化を起点とするペプチドの誘導体化
  8. 新世代鎮痛剤の販売継続を 米政府諮問委が勧告
  9. FAMSO
  10. 求電子的トリフルオロメチル化 Electrophilic Trifluoromethylation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP