畑に生えている大豆の根っこを抜いてみると、丸い粒みたいなものがたくさんできています。根粒(こんりゅう)と呼ばれるこの粒つぶの中では、実は地球上の全ての生き物にとって、とても重要な化学反応が行われています。それは、窒素(N2)からアンモニア(NH3)を作る反応、つまり窒素の固定反応です。
植物も動物も、空気中から窒素(N2)を直接取り込むことはできません。そこで、大豆のようなマメ科の植物は、根粒の中に根粒菌という微生物を宿すことで、窒素固定を代わりに行ってもらっています。今回は、根粒菌が大豆の遺伝子発現をコントロールする方法について、Science誌に発表された興味深い論文を紹介します。
“Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation” Ren, B.; Wang, X.; Duan, J.; Ma, J. Science 2019, 365, 919. DOI: 10.1126/science.aav8907
1. 大豆に共生する根粒菌
窒素原子は、DNA・RNAを作る核酸、タンパクを作るアミノ酸、ビタミンB群、ヒアルロン酸など、生き物にとって不可欠な分子の多くに含まれています。ところが、植物や動物は、窒素(N2)を空気中から取り込むことはできません。そこで、窒素を他の生き物でも使える形、アンモニア(NH3)に変えてくれているのが根粒菌などの微生物です(図1)。根粒菌は、マメ科植物の根粒の中に住み、植物にアンモニアを供給する代わりに、植物から栄養(糖、有機酸など)を受け取って生きています。このような関係は、根粒にも植物にも有益なので、共生と呼ばれます。
植物と根粒菌の共生を理解することは、化学肥料を減らし、温室効果ガス(N2O)排出・水質汚染を抑制することにもつながるため、とても重要です。今回紹介する論文では、大豆と根粒菌の共生について、ある興味深い発見がなされました。それは、根粒菌が自分のtRNAのかけらを大豆の中に送り込み、大豆の遺伝子発現を制御しているということです。tRNAは、もともとは翻訳の際にアミノ酸を新生タンパクへとつなげる介在分子として知られています。そのtRNAが、根粒菌による大豆の遺伝子発現制御に使われているという点が、今回の論文で特に興味深い点です。そもそもRNAって何だっけ?という人のために、次項で少しRNAの説明をしてから論文の解説に入りたいと思います。
2. RNAの新しい役割 – tRFによる遺伝子の発現制御
RNAって何?と聞かれると、まず思い浮かぶのは、DNAから転写されて翻訳に使われるmRNA(メッセンジャーRNA)のことだと思います。もう少し生物に詳しい人なら、前述のtRNA(トランスファーRNA)や、rRNA(リボソームRNA)のことも思い浮かぶかもしれません(図2)。私が高校時代に生物の授業で習ったのはここまでですが、RNAの概念は最先端の研究でどんどん変わり続けています。
特に、ここ20年の研究で解明されつつあるのが、miRNA(マイクロRNA)という小さな一本鎖RNA分子の働きです。miRNAは、20〜25塩基からなるとても小さなRNA分子で、主にmRNAに結合して遺伝子の発現を調節します(図3)。RISC と呼ばれるタンパク複合体に取り込まれたmiRNAは、標的のmRNAを分解したり、その翻訳を阻害したりします。
このような「遺伝子発現の調節」というRNAの機能は、「DNAとタンパクを繋ぐ遺伝情報のコピー(mRNA)」という、従来のRNAの機能と並び、非常に重要なものと位置付けられるようになってきています。なので、RNAって何?と聞かれて、単に「タンパクに翻訳されるもの」と答えた人は半分正解で、本当はRNAは「遺伝子発現の調節」も担っています。
さて、RNAによる遺伝子発現の調節について、特に最近になって注目を浴び始めているのが、tRNA由来の小さなRNA分子(tsRNA)です。tRNAは、もともとは翻訳時にアミノ酸を転移させる介在分子として知られていましたが、最近では、酵素によって切断されたtRNAの一部が、miRNAのように遺伝子発現の調節を行うことが明らかになりつつあります(図4)。特に小さな18〜30塩基のものはtRF(tRNA-derived fragment;tRNA由来断片)と呼ばれ、ガン、免疫応答、神経変性疾患などとも関わることが報告されています。
3. 根粒菌のtRFが、大豆の根粒形成を促進する
さて、Purdue大学で大豆の研究に取り組んでいたJianxin Ma教授らは、RNA配列を解析する中で、根粒菌のtRFが、大豆の遺伝子にマッチすることを見出しました(図5)。配列がマッチしているということは、根粒菌のtRFが大豆の遺伝子に何らかの作用を及ぼしている可能性があります。
彼らは、まず標的遺伝子の役割を調べるため、大豆の標的遺伝子をノックアウトし、どのような影響が出るかを調べました(図6a)。すると、ノックアウト後の大豆では、根粒の数が増大することが分かりました(図6b)。ノックアウトすると根粒形成が促進される、つまり逆に考えると、標的遺伝子は根粒形成を抑制させる働きを持っていると言えます。
次に、tRFの効果を調べるため、tRFに結合して働きを阻害する配列(STTM;short tandem target mimic)を大豆に導入し、根粒形成の様子を調べました。すると、STTM導入後の大豆では、根粒の数が減少することが分かりました(図7)。tRFを阻害すると根粒形成が抑制される、ということは、tRFは根粒形成を促進する役割を果たしていると考えられます。
さらに論文中では、根粒菌のtRFが、大豆のAGOタンパク(AGO1)と結合することも示されています。AGOタンパクとは、miRNAやsiRNAに結合し、mRNAの切断や翻訳阻害を行うタンパクのことで、RNA誘導サイレンシング複合体(RISC)の主要な構成要素でもあります。
一連の実験から、次のようなモデルが立てられます(図8)。
- 大豆の根粒形成は、標的遺伝子によって抑制されている。
- 根粒菌が大豆の根に集まると、根粒菌のtRFが大豆に送られる。
- tRFが大豆のAGOタンパクと結合し、標的遺伝子を切断。
- 標的遺伝子の発現が抑制されることで、大豆の根粒形成が促進される。
4. おわりに
今回の論文では、大豆に共生する根粒菌が、大豆にtRNA断片を送り込み、遺伝子発現を外部から調節していることが示されました。根粒菌から送り込まれたtRFは、大豆の持つAGOタンパクを乗っ取り、標的となる大豆の遺伝子を切断します。
tRFがどのようにして原核生物・真核生物という異なる生物の間で機能するようになったのか、tRNAにアミノ酸転移と遺伝子発現調節という2つの機能が同時に与えられていることの意義は何なのか、まだまだ知られていないことは多々ありますが、今後解明されていくことが期待されます。
参考文献
- Udvardi, M.; Poole, P. S. Annu. Rev. Plant Biol. 2013, 64, 781. DOI: 10.1146/annurev-arplant-050312-120235
- Kanai, A. Life 2015, 5, 321. DOI: 10.3390/life5010321
- Li, S.; Xu, Z.; Sheng, J. Genes 2018, 9, 246. DOI: 10.3390/genes9050246
関連リンク
- 窒素固定をめぐって – 1:ケムステ記事
- 窒素固定をめぐって – 2:ケムステ記事
- ノンコーディングRNA 〜 RNA分子の全体像を俯瞰する〜:ケムステ記事(化学書籍レビュー)