[スポンサーリンク]

化学者のつぶやき

(–)-Vinigrol短工程不斉合成

[スポンサーリンク]

保護基を用いない(–)-Vinigrolの不斉全合成が達成された。従来法の分子内Diels–Alder反応(IMDA)を用いず、分子内[5+2]環化付加反応を用いたことが短工程合成の鍵である。

ビニグロール

(–)-Vinigrol(1)は1987年、Hashimotoらによって真菌株Virgaria nigra F-5408から単離されたジテルペンである[1]。(–)-1はヒトの血小板凝集阻害作用を有し、腫瘍壊死因子の拮抗剤になりうる。また、8つの不斉中心をもつ1,5-ブタノデカヒドロナフタレン骨格が複雑な環構造を形成していることから、合成化学的にも注目を集める化合物である。
2009年にBaranらは、分子内Diels–Alder反応(IMDA)とGrob開裂を鍵反応とし、1,5-ブタノデカヒドロナフタレン骨格を構築し、初の(±)-1の全合成を達成した(Figure 1A)[2a]。その後、2012年にはBarriaultらがⅡ型IMDAを用いて(Figure 1B)[2b,3a]、2013年にはNjardarsonらが酸化的脱芳香族化に続くIMDAを用いた(±)-1の全合成を報告した(Figure 1C)[2c,d]。また、ごく最近Luoらによって、渡環Diels–Alder反応を用いた初の(–)-1の不斉全合成が達成された(Figure 1D)[2e]。しかし、いずれの合成法もDiels–Alder反応で骨格形成を行っており、工程数も比較的多いことが課題であった。
今回、南方科技大学のLiらは、クロロジヒドロカルボン(2)から14工程で(–)-1の不斉全合成を達成した(Figure 1E)。合成困難である1,5-ブタノデカヒドロナフタレン骨格を既報とは異なるⅡ型[5+2]環化付加反応によって構築したことが本合成の特徴である[3b]。また、保護基を用いないことで、工程数の短縮にも成功した。

Figure 1. (±)-1の全合成 (A) Baran、(B) Barriault、(C) Njardarson、(–)-1の不斉全合成、(D) Luo、(E) 今回の合成経路

 

“Asymmetric Total Synthesis of ()-Vinigrol”
Min, L.; Lin, X.; Li, C.C. J. Am. Chem. Soc. 2019, 141, 15773–15778.
DOI: 10.1021/jacs.9b08983

論文著者の紹介

研究者:Chuang-Chuang Li

研究者の経歴:
1997–2001 B.S., China Agricultural University, China (Prof. Dao-Quan Wang)
2001–2006 Ph.D., Peking University, China (Prof. Zhen Yang)
2006–2008 Postdoc., The Scripps Research Institute, USA (Prof. Phil S. Baran)
2008–2013.12 Associate Professor, Peking University, China
2014.1–2017.12 Research Professor, Southern University of Science and Technology, China
2018.1– Full Professor, Southern University of Science and Technology, China

研究内容:合成方法論の開発、ケミカルバイオロジー、天然物合成

論文の概要

Liらは21の不斉合成におけるキラルプールとして用いた(Figure 2A)。2から6工程を経て環化付加反応前駆体3へと導いた。次に、ヒドロキニジンを添加することで、中間体5を生成、続くⅡ型分子内[5+2]環化付加反応によって、1,5-ブタノデカヒドロナフタレン4を構築することに成功した。4のWilkinson触媒を用いた水素添加およびヒドロホウ素化により、ジオール体6を得た。続いて、得られた6のIBX酸化を行ったが、所望の7は得られず、予想外のヘテロ架橋構造をもつ9が得られた。その後、ヨウ化サマリウムによる還元でヘテロ架橋構造を開裂させた後、Mander試薬と反応させ、続いてPhSeBrを作用させることによりエノン体10を合成した。10のDIBAL還元により (–)-1への変換を試みたが、11が得られた。そこで、11の一重項酸素-エン反応を行うことで、(–)-1の全合成を達成した。
筆者らは、6のIBX酸化過程を以下のように推定した(Figure 2B)。まず、IBX存在下ヒドロキシ基およびC4a位が酸化され、ヒドロキシジケトン8が生じる。続いて、ヒドロキシ基の立体障害の少ないケトンに対する求核攻撃により、オキセタノン8aが形成する。8aのC3位からC4位への転位が進行し、不安定なb-ラクトン8bが生成する。その後の脱炭酸によりエノール体8cが生じ、ケト-エノール互変異性によりケトン体9が得られる。

Figure 2. (A) (–)-1の合成経路、(B) 6から9の反応機構

 

以上、保護基を用いることなく14工程で(–)-1の不斉全合成が達成された。今後、1,5-ブタノデカヒドロナフタレン骨格を持つ類似体の効率的合成およびそれらを用いた生物学的研究への展開が期待される。

参考文献

  1. Uchida, I.; Ando, T.; Fukami, N.; Yoshida, K.; Hashimoto, M.; Tada, T.; Koda, S.; Morimoto, Y. The Structure of Vinigrol, a Novel Diterpenoid with Antihypertensive and Platelet Aggregation-Inhibitory Activities. J. Org. Chem. 1987, 52, 5292–5293. DOI: 10.1021/jo00232a048
  2. (a)Maimone, T. J.; Shi, J.; Ashida, S.; Baran, P. S. Total Synthesis of Vinigrol. J. Am. Chem. Soc. 2009, 131, 17066–17067. DOI: 10.1021/ja908194b (b) Poulin, J.; Grisé-Bard, C. M.; Barriault, L. A Formal Synthesis of Vinigrol. Angew. Chem., Int. Ed. 2012, 51, 2111–2114. DOI: 10.1002/anie.201108779(c) Yang, Q.; Njardarson, J. T.; Draghici, C.; Li, F. Total Synthesis of Vinigrol. Angew. Chem., Int. Ed. 2013, 52, 8648–8651. DOI: 10.1002/anie.201304624 (d) Yang, Q.; Draghici, C.; Njardarson, J. T.; Li, F.; Smith, B. R.; Das, P. Evolution of an Oxidative Dearomatization Enabled Total Synthesis of Vinigrol. Org. Biomol. Chem. 2014, 12, 330–344. DOI: 10.1039/C3OB42191K (e) Yu, X.; Xiao, L.; Wang, Z.; Luo, T. Scalable Total Synthesis of (–)-Vinigrol. J. Am. Chem. Soc. 2019, 141, 3440–3443. DOI: 10.1021/jacs.9b00621
  3. (a)Juhl, M.; Tanner D. Recent Applications of Intramolecular Diels–Alder Reactions to Natural Product Synthesis. Chem. Soc. Rev. 2009, 38, 2983–2992. DOI: 1039/B816703F (b) Garst, M. E.; McBride, B. J.; DouglassIII, J. G. Intramolecular Cycloadditions with 2-(ω-Alkenyl)-5-Hydroxy-4-Pyrones. Tetrahedron Lett. 1983, 24, 1675–1678. DOI: 10.1016/S0040-4039(00)81742-6

用語説明

分子内Diels–Alder反応(IMDA)[3a]

Ⅰ型およびⅡ型がある(Figure 3A)。Ⅰ型はジエンのC1位にジエノフィルが結合している場合に起こるIMDAの反応形式であり、縮合した二環化合物を与える。一方で、Ⅱ型はジエンのC2位とジエノフィルが結合しており、架橋構造を有する二環化合物を与える。

分子内[5+2]環化付加反応[3b]

IMDA同様にⅠ型およびⅡ型に区別される(Figure 3B)。Ⅰ型はオレフィンのb位にアルキル鎖が結合しており、縮合した二環化合物を与える。一方で、Ⅱ型はa位にアルキル鎖が結合しており、生成物は架橋構造を有する二環化合物を与える。

関連書籍

[amazonjs asin=”B07Q29X17C” locale=”JP” title=”Modern Applications of Cycloaddition Chemistry (English Edition)”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 工程フローからみた「どんな会社が?」~タイヤ編 その3
  2. 前人未踏の超分子構造体を「数学のチカラ」で見つけ出す
  3. 世界の「イケメン人工分子」① ~ 分子ボロミアンリング ~
  4. ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティク…
  5. アジドインドリンを利用した深海細菌産生インドールアルカロイド骨格…
  6. BASF International Summer Course…
  7. 2001年ノーベル化学賞『キラル触媒を用いる不斉水素化および酸化…
  8. ChemDrawの使い方【作図編①:反応スキーム】

注目情報

ピックアップ記事

  1. 炭素をつなげる王道反応:アルドール反応 (4)
  2. 植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~
  3. 「一家に1枚」ポスターの企画募集
  4. ベンゼン環記法マニアックス
  5. パラジウムの市場価格が過去最高値を更新。ケミストへの影響は?
  6. 真島利行系譜
  7. 第169回―「両性分子を用いる有機合成法の開発」Andrei Yudin教授
  8. 生体外の環境でタンパクを守るランダムポリマーの設計
  9. Gabriel試薬類縁体
  10. 【書評】科学実験でスラスラわかる! 本当はおもしろい 中学入試の理科

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー