[スポンサーリンク]

化学者のつぶやき

スルホンアミドからスルホンアミドを合成する

[スポンサーリンク]

スルホンアミドを、温和な条件で塩化スルホニルに変換する手法が開発された。本法は合成終盤で、求核性が低く反応しにくい一級スルホンアミドを、強力な求電子剤である塩化スルホニルに変換することが可能で、スルホンアミド・スルホン酸、フッ化スルホニルなどへ誘導できる

スルホンアミド合成

スルホンアミドと関連するスルホニル化合物は医農薬にみられる重要骨格である。そのため、スルホンアミド類の効率的かつ温和な新合成手法の開発は注目に値する。一般的にスルホンアミドは、強力な求電子剤である塩化スルホニルとアミンを反応させることで得られる。しかし、塩化スルホニルはスルフィドを酸化したのち、得られたスルホン酸に塩化ホスホリルを作用させるか、スルフィドに直接塩化スルフリルなどの強い酸化剤を作用させることで得られるため、適用できる基質が限られる(図1A)。一方、塩化スルホニルを経由しない、カップリングによる芳香族スルホンアミド類の合成手法も近年多く報告されている。例えば2010年、WillisらはDABCO・(SO2)2を二酸化硫黄源、ヒドラジンを求核剤としたハロゲン化アリールのアミノスルホニル化を報告した[1]。また、2018年にはWuらが同試薬を用いた、アリールジアゾニウム塩の芳香族スルホンアミド化を開発している(図1B)[2]。しかし、これらは芳香族スルホンアミドのみ合成可能であり、基質一般性も低い。
直近では、Fier, MaloneyらがNHC触媒による一級スルホンアミドの脱アミノ化・官能基化を報告した。スルホンアミドをスルフィン酸へ変換し、求電子剤を作用させることで、官能基を導入した(図1C)[3]。しかし、官能基は求電子剤に限定され、アミンやアルコールの直接導入は困難であった。
マックス・プランク石炭研究所のCornellaらは、合成終盤で様々なスルホニル化合物へ変換するためには、改めて強力な求電子剤である塩化スルホニルの生成が最も有効だと考えた。そこで、今回筆者らは一級スルホンアミドに対し、ピリリウム塩[4]と塩化マグネシウムを作用させることで、温和な条件での塩化スルホニル合成を達成し、複雑な求核的官能基の導入を可能にした(図1D)。

図1. (A) 酸化剤による塩化スルホニル合成 (B) カップリングによるスルホンアミドの合成 (C) 脱アミノ化/官能基化反応 (D) 今回の反応

 

Selective Late-Stage Sulfonyl Chloride Formation from Sulfonamides Enabled by Pyry-BF4
Palomino, A. G.; Cornella, J. Angew. Chem., Int. Ed. 2019, 58, 18235–18239.
DOI: 10.1002/anie.201910895

論文著者の紹介

https://www.cornellab.com/aboutjc#bio

研究者:Josep Cornella
研究者の経歴:–2008 MSc, The University of Barcelona, Spain
2008–2012 Ph.D., The Queen Mary University of London, England (Prof. Igor Larrosa)
2012–2015 Postdoc, The Institute of Chemical Research of Catalunya, Spain (Prof. Ruben Martin)
2015–2017 Postdoc, The Scripps Research Institute, USA (Prof. Phil S. Baran)
2017– Research Group Leader, The Max-Planck-Institut für Kohlenforschung, Germany
研究内容:遷移金属触媒を用いた反応開発、有機合成における持続可能な触媒開発

論文の概要

本反応はtBuOH溶媒中、一級スルホンアミドとピリリウム塩Pyry-BF4(1)が縮合し、活性種2が生成する。続いて2と塩化マグネシウムが反応し、塩化スルホニル3を与える。添加剤を加えない場合は、水が2と反応しスルホン酸4を与える(図2A)。
芳香族スルホンアミドのみならずアルキルスルホンアミドにおいても、塩化スルホニル3a3cまたはスルホン酸4a4cを与えた。しかし、芳香環に電子求引基をもつアリールスルホンアミドは中程度の収率にとどまった(3d,4d)。アルコールを有する場合でも高収率で塩化スルホニルが得られたが(3e)、アミノ基を有する場合は得られなかった(3f)。さらに、トリフルオロメチルケトンやアミドを含むスルホンアミド(3g)やフロセミド(3h)など、一級スルホンアミドを有する医薬品も同様に塩化スルホニルへの誘導化に成功した (図2B)。高い求電子性を有する塩化スルホニルが温和な条件で得られたことにより、種々の求核剤を導入することができる。例えば、フロセミド誘導体やセレコキシブ誘導体を対応する塩化スルホニルに変換しアモキサピンやシタグリプチンなどの複雑なアミンと高収率で縮合させることができる(5a5f)(図2C)。さらに、スルホンアミドのみならず、リンまたはフッ素を含む求核剤を用いた場合にS–P, S–F結合の形成も可能であった。

図2. (A) スルホンアミドの官能基変換 (B) 基質適用範囲 (C) スルホンアミドを含む医薬品の変換

以上、スルホンアミドから塩化スルホニルの温和な合成法が開発され、合成終盤にみられる複雑な骨格を有する求核剤の導入が可能になった。今後、医薬品誘導化への利用が期待される。

参考文献

  1. Nguyen, B.; Emmett, E. J.; Willis, M. C. Palladium-Catalyzed Aminosulfonylation of Aryl Halides. J. Am. Chem. Soc. 2010, 132, 16372–16373. DOI: 1021/ja1081124
  2. Zhang, F.; Zheng, D.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Synthesis of Aromatic Sulfonamides through a Copper-Catalyzed Coupling of Aryldiazonium Tetrafluoroborates, DABCO·(SO2)2, and N‐Chloroamines. Org. Lett. 2018, 20, 1167−1170. DOI: 1021/acs.orglett.8b00093
  3. Fier, P. S.; Maloney, K. M. NHC-Catalyzed Deamination of Primary Sulfonamides: A Platform for Late-Stage Functionalization. J. Am. Chem. Soc. 2019, 141, 1441−1445. DOI: 1021/jacs.8b11800
  4. Moser, D.; Duan, Y.; Wang, F.; Ma, Y.; O’Neill, M. J.; Cornella, J. Selective Functionalization of Aminoheterocycles by a Pyrylium Salt. Angew. Chem., Int.Ed. 2018, 57, 11035–11039. DOI: 1002/anie.201806271
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. オートファジーの化学的誘起で有害物質除去を行う新戦略「AUTAC…
  2. アカデミックの世界は理不尽か?
  3. BASFクリエータースペース:議論とチャレンジ
  4. 第31回光学活性化合物シンポジウム
  5. とある化学者の海外研究生活:スイス留学編
  6. マテリアルズ・インフォマティクスの基礎から実践技術まで学ぶワンス…
  7. 荷電π電子系が発現するジラジカル性をイオンペア形成によって制御
  8. 鉄カルベン活性種を用いるsp3 C-Hアルキル化

注目情報

ピックアップ記事

  1. 有機化学クロスワードパズル
  2. スクリプス研究所
  3. 有機合成化学総合講演会@静岡県立大
  4. シラフルオフェン (silafluofen)
  5. 日宝化学、マイクロリアクターでオルソ酢酸メチル量産
  6. マックス・プランク Max Planck
  7. 信じられない!驚愕の天然物たち
  8. リケジョ注目!ロレアル-ユネスコ女性科学者日本奨励賞-2013
  9. Impact Factorかh-indexか、それとも・・・
  10. 分子があつまる力を利用したオリゴマーのプログラム合成法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP