[スポンサーリンク]

化学者のつぶやき

スルホンアミドからスルホンアミドを合成する

[スポンサーリンク]

スルホンアミドを、温和な条件で塩化スルホニルに変換する手法が開発された。本法は合成終盤で、求核性が低く反応しにくい一級スルホンアミドを、強力な求電子剤である塩化スルホニルに変換することが可能で、スルホンアミド・スルホン酸、フッ化スルホニルなどへ誘導できる

スルホンアミド合成

スルホンアミドと関連するスルホニル化合物は医農薬にみられる重要骨格である。そのため、スルホンアミド類の効率的かつ温和な新合成手法の開発は注目に値する。一般的にスルホンアミドは、強力な求電子剤である塩化スルホニルとアミンを反応させることで得られる。しかし、塩化スルホニルはスルフィドを酸化したのち、得られたスルホン酸に塩化ホスホリルを作用させるか、スルフィドに直接塩化スルフリルなどの強い酸化剤を作用させることで得られるため、適用できる基質が限られる(図1A)。一方、塩化スルホニルを経由しない、カップリングによる芳香族スルホンアミド類の合成手法も近年多く報告されている。例えば2010年、WillisらはDABCO・(SO2)2を二酸化硫黄源、ヒドラジンを求核剤としたハロゲン化アリールのアミノスルホニル化を報告した[1]。また、2018年にはWuらが同試薬を用いた、アリールジアゾニウム塩の芳香族スルホンアミド化を開発している(図1B)[2]。しかし、これらは芳香族スルホンアミドのみ合成可能であり、基質一般性も低い。
直近では、Fier, MaloneyらがNHC触媒による一級スルホンアミドの脱アミノ化・官能基化を報告した。スルホンアミドをスルフィン酸へ変換し、求電子剤を作用させることで、官能基を導入した(図1C)[3]。しかし、官能基は求電子剤に限定され、アミンやアルコールの直接導入は困難であった。
マックス・プランク石炭研究所のCornellaらは、合成終盤で様々なスルホニル化合物へ変換するためには、改めて強力な求電子剤である塩化スルホニルの生成が最も有効だと考えた。そこで、今回筆者らは一級スルホンアミドに対し、ピリリウム塩[4]と塩化マグネシウムを作用させることで、温和な条件での塩化スルホニル合成を達成し、複雑な求核的官能基の導入を可能にした(図1D)。

図1. (A) 酸化剤による塩化スルホニル合成 (B) カップリングによるスルホンアミドの合成 (C) 脱アミノ化/官能基化反応 (D) 今回の反応

 

Selective Late-Stage Sulfonyl Chloride Formation from Sulfonamides Enabled by Pyry-BF4
Palomino, A. G.; Cornella, J. Angew. Chem., Int. Ed. 2019, 58, 18235–18239.
DOI: 10.1002/anie.201910895

論文著者の紹介

https://www.cornellab.com/aboutjc#bio

研究者:Josep Cornella
研究者の経歴:–2008 MSc, The University of Barcelona, Spain
2008–2012 Ph.D., The Queen Mary University of London, England (Prof. Igor Larrosa)
2012–2015 Postdoc, The Institute of Chemical Research of Catalunya, Spain (Prof. Ruben Martin)
2015–2017 Postdoc, The Scripps Research Institute, USA (Prof. Phil S. Baran)
2017– Research Group Leader, The Max-Planck-Institut für Kohlenforschung, Germany
研究内容:遷移金属触媒を用いた反応開発、有機合成における持続可能な触媒開発

論文の概要

本反応はtBuOH溶媒中、一級スルホンアミドとピリリウム塩Pyry-BF4(1)が縮合し、活性種2が生成する。続いて2と塩化マグネシウムが反応し、塩化スルホニル3を与える。添加剤を加えない場合は、水が2と反応しスルホン酸4を与える(図2A)。
芳香族スルホンアミドのみならずアルキルスルホンアミドにおいても、塩化スルホニル3a3cまたはスルホン酸4a4cを与えた。しかし、芳香環に電子求引基をもつアリールスルホンアミドは中程度の収率にとどまった(3d,4d)。アルコールを有する場合でも高収率で塩化スルホニルが得られたが(3e)、アミノ基を有する場合は得られなかった(3f)。さらに、トリフルオロメチルケトンやアミドを含むスルホンアミド(3g)やフロセミド(3h)など、一級スルホンアミドを有する医薬品も同様に塩化スルホニルへの誘導化に成功した (図2B)。高い求電子性を有する塩化スルホニルが温和な条件で得られたことにより、種々の求核剤を導入することができる。例えば、フロセミド誘導体やセレコキシブ誘導体を対応する塩化スルホニルに変換しアモキサピンやシタグリプチンなどの複雑なアミンと高収率で縮合させることができる(5a5f)(図2C)。さらに、スルホンアミドのみならず、リンまたはフッ素を含む求核剤を用いた場合にS–P, S–F結合の形成も可能であった。

図2. (A) スルホンアミドの官能基変換 (B) 基質適用範囲 (C) スルホンアミドを含む医薬品の変換

以上、スルホンアミドから塩化スルホニルの温和な合成法が開発され、合成終盤にみられる複雑な骨格を有する求核剤の導入が可能になった。今後、医薬品誘導化への利用が期待される。

参考文献

  1. Nguyen, B.; Emmett, E. J.; Willis, M. C. Palladium-Catalyzed Aminosulfonylation of Aryl Halides. J. Am. Chem. Soc. 2010, 132, 16372–16373. DOI: 1021/ja1081124
  2. Zhang, F.; Zheng, D.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Synthesis of Aromatic Sulfonamides through a Copper-Catalyzed Coupling of Aryldiazonium Tetrafluoroborates, DABCO·(SO2)2, and N‐Chloroamines. Org. Lett. 2018, 20, 1167−1170. DOI: 1021/acs.orglett.8b00093
  3. Fier, P. S.; Maloney, K. M. NHC-Catalyzed Deamination of Primary Sulfonamides: A Platform for Late-Stage Functionalization. J. Am. Chem. Soc. 2019, 141, 1441−1445. DOI: 1021/jacs.8b11800
  4. Moser, D.; Duan, Y.; Wang, F.; Ma, Y.; O’Neill, M. J.; Cornella, J. Selective Functionalization of Aminoheterocycles by a Pyrylium Salt. Angew. Chem., Int.Ed. 2018, 57, 11035–11039. DOI: 1002/anie.201806271
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. フラクタルな物質、見つかる
  2. 化学者が麻薬を合成する?:Breaking Bad
  3. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体…
  4. 鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化
  5. 第44回ケムステVシンポ「未来を切り拓く半導体材料科学の最前線」…
  6. 有機合成化学協会誌2024年5月号:「分子設計・編集・合成科学の…
  7. 熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-
  8. 共有結合性有機構造体(COF)の新規合成・薄膜化手法を開発

注目情報

ピックアップ記事

  1. エネルギーの襷を繋ぐオキシムとアルケンの[2+2]光付加環化
  2. STAP細胞問題から見えた市民と科学者の乖離ー前編
  3. N-ヘテロ環状カルベン / N-Heterocyclic Carbene (NHC)
  4. Essential Reagents for Organic Synthesis
  5. アメリカ大学院留学:実験TAと成績評価の裏側
  6. 自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間
  7. 細胞の中を旅する小分子|第一回
  8. ホフマン脱離 Hofmann Elimination
  9. E値 Environmental(E)-factor
  10. オカモトが過去最高益を記録

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP