[スポンサーリンク]

化学者のつぶやき

光で2-AGの量を制御する

[スポンサーリンク]

ケージド化合物を用いた2-AG量の操作法が初めて開発された。2-AG量を時空間的に操作することができる点から、細胞生物学での応用が期待できる。

 2-アラキドノイルグリセロール

内因性カンナビノイドである2-アラキドノイルグリセロール(2-AG, 1)は、Gタンパク質共役カンナビノイド受容体の一種であるCB1とCB2のリガンドである(図1A)。
下流のシグナル伝達系は我々の気分、食欲、痛覚またはインスリン分泌などを調節している。細胞内における2-AG量の調節には様々な試みがなされてきた。
2009年Liu教授らはリパーゼ阻害剤を用いて2-AG量の調節を試みたが、他のグリセロール量にも影響する手法であった(1)
一方、光で除去可能な保護基(PRPG)をもつケージド化合物は、生理活性分子の存在量を直接制御する目的でこれまで広く利用されてきた。ケージド化合物はUVを照射するだけで生理活性分子を放出できるため、目的の生理活性分子の作用するタイミングを制御することができる。これまでに著者らは、クマリン誘導体を連結したアラキドン酸(2)およびスフィンゴシン(3)がケージド化合物として利用できること明らかにした(図1B)(2)。しかし、ジオールをクマリン誘導体で保護する場合環状アセタールの環員数が光脱保護(アンケージング)に影響する。Lawrenceらの報告によれば、五員環アセタール(4, 5)のアンケージングは可能だが、六員環アセタール(6, 7)は光耐性を示す(図1C)(3)。そのため、クマリンを連結した1,3-ジオールをケージド化合物として利用した報告例はなかった。
今回、Schultzらは、「ケージド」2-アラキドノイルグリセロール(cg2-AG, 8)を合成し、光照射によって細胞内の2-AG量を制御する手法を開発した(図1D)。六員環アセタール上のエステルがアンケージング成功の鍵であった。また、PRPGとして蛍光分子であるクマリンを用いることで、蛍光を観察するだけで2-AGの放出を追跡することができる。

図1. A.2-AGの構造 B. 著者らが報告したケージド化合物の例C. ジオール類のケージド化合物D. cg2-AGのアンケージング

 

“Photorelease of 2Arachidonoylglycerol in Live Cells”
Laguerre, A.;Hauke, S.; Qiu, J.; Kelly, M.J.; Schultz, C.J. Am. Chem. Soc.2019,141,16544-16547.
DOI: 10.1021/jacs.9b05978

論文著者の紹介


研究者:Carsten Schultz
研究者の経歴:
1986-1989 Ph.D., Chemistry, Bremen University, Germany (Prof. Bernd Jastorff)
1990-1993 Postdoc, Pharmacology, University of California San Diego, USA (Prof. Roger Y. Tsien)
1993-1996 Habilitation Fellow, Bremen University, Germany (Prof. Bernd Jastorff)
1996-2000 Researcher, Bremen University, Germany (Prof. Bernd Jastorff)
2000-2001 Group leader, Max-Planck-Institute for Molecular Physiology in Dortmund, Germany 2001- Group Leader, European Molecular Biology Laboratory, Germany
2016- Professor, Oregon Health and Science University, USA
研究内容:シグナル伝達の理解に向けたツール開発

論文の概要

著者らはまずcg2-AGの合成を行った。出発物質である7-ジエチルアミノ-4-メチルクマリン(10)をDMAと反応させた後、NaIO4により酸化し12を得た。その後、12にグリセリンを作用させてアルコール13を合成した。最後にアラキドン酸との縮合によりcg2-AGを得た(図2A)。
次にアンケージングの条件検討を行い、8のアンケージングには水および375 nmの光照射が必要であることを確認した。また、9は殆ど蛍光を発しない。これらのことから、407 nmの光照射で蛍光の減少を観測することで2-AGの放出の追跡ができることを示した(図2B)。
続いて、CB1およびCB2を発現するマウスb細胞株MIN6を用いた実験を行った。cg2-AGで処理したMIN6に375 nmの光を当てると蛍光発光強度が著しく減少した。一方、アルコール13で処理したMIN6では変化がなかったため、cg2-AGのエステル部位がアンケージングの鍵となることがわかった。(図2C)。
内因性カンナビノイドはCB1を活性化し細胞内Ca2+濃度を上昇させる。そこで、著者らは光照射前後におけるCa2+濃度変化を調べた(図2D)。cg2-AGで処理したMIN6細胞のCa2+濃度は光を照射したのみ上昇した。CB1アンタゴニストであるリモナバンド存在下培養した細胞では、Ca2+濃度が確認できなかったことから、アンケージングされたcg2-AGはCB1を特異的に活性化することが示された。また、cg-2AGで処理したMIN6細胞の膜電位の変化から、2-AGがCB1の活性化を通じてGタンパク質活性化カリウムチャネル(GIRK)の開閉に関与することも示した(図2E)。

図2. A. cg2-AGの合成 B. cg2-AGとアルコール13のUV/visスペクトル C. cg2-AGまたはアルコール13で処理したMIN6の共焦点顕微鏡写真 D. cg2-AGのCa2+に対する影響E. カリウム移動により誘起された電流(一部論文より引用)

 

以上、光で除去可能な保護基をもつ「ケージド」2-アラキドノイルグリセロールによる2-AG量の調節法が開発された。2-AG量を時空間的に操作することができる点から、細胞生物学での応用が期待できる。

参考文献

  1. Pan, B.; Wang, W.; Long, J. Z.; Sun, D.; Hillard, C. J.; Cravatt, B. F.; Liu, Q.-S. Blockade of 2-Arachidonoylglycerol Hydrolysis by Selective Monoacylglycerol Lipase Inhibitor 4-Nitrophenyl 4-(Dibenzo- [d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) Enhances Retrograde Endocannabinoid Signaling. J. Pharmacol. Exp. Ther. 2009,331,591-597. DOI: 10.1124/jpet.109.158162
  2. (a) Nadler, A.; Yushchenko, D. A.; Müller, R.; Stein, F.; Feng, S.; Mulle, C.; Carta, M.; Schultz, C. Exclusive Photorelease of Signalling Lipids at the Plasma Membrane. Nat. Commun. 2015,6,10056. DOI: 10.1038/ncomms10056 (b) Höglinger, D.; Haberkant, P.; Aguilera-Romero, A.; Riezman, H.; Porter, F. D.; Platt, F. M.; Galione, A.; Schultz, C. Intracellular Sphingosine Releases Calcium from Lysosomes.eLife 2015, 4,No. e10616. DOI: 10.7554/eLife.10616
  3. Lin, W.; Lawrence, D. S. A Strategy for the Construction of Caged Diols Using a Photolabile Protecting Group. J. Org. Chem.2002,67,2723-2726. DOI: 10.1021/jo0163851

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. そこまでやるか?ー不正論文驚愕の手口
  2. 新形式の芳香族化合物を目指して~反芳香族シクロファンにおける三次…
  3. 【6月開催】 【第二期 マツモトファインケミカル技術セミナー開催…
  4. 新規色素設計指針を開発 -世界最高の太陽光エネルギー変換効率の実…
  5. 【ナード研究所】ユニークな合成技術~先端研究を裏支え!~
  6. とある社長の提言について ~日本合成ゴムとJSR~
  7. 剛直な環状ペプチドを与える「オキサゾールグラフト法」
  8. 機能を持たせた紙製チップで化学テロに備える ―簡単な操作でサリン…

注目情報

ピックアップ記事

  1. 土釜 恭直 Kyoji Tsuchikama
  2. フリー素材の化学イラストを使ってみよう!
  3. 赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-
  4. 細孔内単分子ポリシラン鎖の特性解明
  5. マイクロ波を用いた革新的製造プロセスとヘルスケア領域への事業展開 (凍結乾燥/乾燥、ペプチド/核酸合成、晶析、その他有機合成など)
  6. マイクロリアクターで新時代!先取りセミナー 【終了】
  7. CEMS Topical Meeting Online 超分子ポリマーの進化形
  8. 市川アリルシアナート転位 Ichikawa Allylcyanate Rearrangement
  9. 過ぎ去りし器具への鎮魂歌
  10. 香料化学 – におい分子が作るかおりの世界

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP