[スポンサーリンク]

化学者のつぶやき

ピリジン同士のラジカル-ラジカルカップリング

[スポンサーリンク]

電子移動試薬としてB2pin2を用いたピリジルホスホニウム塩とシアノピリジンのクロスカップリング反応が開発された。ラジカルラジカルカップリングで位置選択的に2,4ビピリジンが生成する。

カップリング法によるビピリジン合成

ビピリジン骨格は多くの医薬品にある重要な骨格であり(1)、その効率的な合成法が強く望まれている。ビピリジンは金属触媒を用いたクロスカップリングで合成できるが、ハロゲン化物、ピリジン金属化合物などの原料合成に多工程を要するという課題があった(図1A)(2)。一方、ピリジンの直接官能基化反応として、Minisci反応に代表されるラジカル付加反応が近年注目を集めている(3)。この反応は酸などで活性化されたピリジン類(ピリジニウム塩)に対し、炭素ラジカルを付加することでピリジンの直接官能基を実現している(図1B)。これまでに、ピリジンにアルキル、アリール、トリフルオロメチル、そしてアシルラジカルを付加できることが報告されている(3)。しかし、ピリジルラジカルを用いたビピリジン骨格の合成例は未だない。この原因は、生成したピリジルラジカルが、ラジカルπ-受容体としてのピリジンとピリジルラジカル前駆体の両者に対して反応しうることから、クロスカップリング選択性が難しいためであると考えられる。

今回、McNally助教授らは彼らがこれまで注力してきたピリジルホスホニウム塩の研究において、B2pin2を用いたボリル化反応の検討中(4)、予期せずピリジルホスホニウム塩とシアノピリジンが位置選択的にクロスカップリングすることを発見した(図1C)。本反応はMinisci反応のようなラジカル付加機構ではなく、ラジカル–ラジカルカップリング機構で進行する。

図1. (A) 金属触媒を用いたクロスカップリングによるビピリジン合成 (B) Minisci反応 (C) ラジカル–ラジカルカップリングによるビピリジン合成

 

A Pyridine-Pyridine Cross-Coupling Reaction via Dearomatized Radical Intermediates

Koniarczyk. J. L.; Greenwood. J. W.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Angew. Chem., Int. Ed.2019, Early view

DOI: 10.1002/anie.201906267

論文著者の紹介

研究者: Andrew McNally

研究者の経歴:
–2003 M.A., M.Sc., Natural Sciences, University of Cambridge (Prof. Ian Paterson)
2003–2007 Ph.D., University of Cambridge (Prof. Matthew J. Gaunt)
2007–2011 Postdoc, Princeton University (Prof. David W. C. MacMillan)
2011–2014 Postdoc, University of Cambridge (Prof. Matthew J. Gaunt)
2014– Assistant Professor, Colorado State University

研究内容:複素環式化合物の直接官能基化反応の開発

研究者: Robert S Paton

研究者の経歴:
–2004 M.A., M.Sc., Natural Sciences, University of Cambridge
2005–2008 Ph.D., University of Cambridge (Prof. J. M. Goodman)
2009–2010 Postdoc., the University of California (Prof. K. N. Houk)
2010–2014 University Lecturer, University of Oxford
2014–2018 AssociateProfessor,University of Oxford (with tenure)
2018– AssociateProfessor, Colorado State University

研究内容:コンピューターによる触媒設計、データ駆動型化学

論文の概要

本反応は、ピリジルホスホニウム塩1とシアノピリジン2を、B2pin2、トリエチルアミン存在下1,2-ジクロロエタン溶媒中室温で反応させることで、2,4’-ビピリジン3を生成する(図2A)。本反応では、2位および3位に置換基をもつピリジルホスホニウム塩1が良好な収率で対応するビピリジン(3a,3b)を与えた。シアノピリジン2に関しては、3位にアルキル基やヘテロ芳香環をもつ基質でも対応する2,4’-ビピリジン(3c,3d)が生成する。

著者らは、ラジカル捕捉実験及びDFT計算などの反応機構解明実験を行い、反応機構を次のように提唱した(図2B)。B2pin2とシアノピリジン2が反応してInt-1が形成した後、ラジカル均一開裂によりシアノピリジンラジカル2’が生成する(図2Ba)。次に2’1が反応してInt-2が生成し、これが分子内1電子移動(SET)することで、ホスホニウムピリジルラジカル1’2が生成する。なお、1’2’の別の生成経路として、B2pin21および2から生成するInt-3の均一開裂もエネルギー的に起こりうることがDFT計算で示唆されている。このようにして生成した2’1’がラジカル–ラジカルカップリングすることで中間体4が生成する。Et3N存在下4が脱ホウ素およびPPh3の脱離によって5となり、最後に5が空気酸化されることで2,4’-ビピリジン3が生成する(図2Bb)。

以上、B2pin2を電子移動試薬として用い、ピリジルホスホニウム塩1とシアノピリジン2がラジカル–ラジカルカップリングすることを発見した。非金属触媒条件下、簡便な操作で反応が進行するため、医薬品合成へのさらなる応用が期待できる。

図2. (A) 基質適用範囲 (B) 推定反応機構

 

参考文献

  1. A. J.; Mercer, S. P.; Schreier, J. D.; Cox, C. D.; Fraley, M. E.; Steen, J. T.; Lemaire, W.; Bruno, J. G.; Harrell, C. M.; Garson, S. L.; Gotter, A. L.; Fox, S. V.; Stevens, J.; Tannenbaum, P. L.; Prueksaritanont, T.; Cabalu, T. D.; Cui, D.; Stellabott, J.; Hartman, G. D.; Young, S. D.; Winrow, C. J.; Renger, J. J.; Coleman, P. J. ChemMedChem.2014,9, 311. DOI: 10.1002/cmdc.201300447
  2. Campeau, L.-C.; Fagnou, K. Chem. Soc. Rev. 2007, 36, 1058. DOI: 10.1039/b616082d
  3. Duncton, M. A. MedChemComm2011, 2, 1135. DOI: 1039/C1MD00134E
  4. (a) Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Science 2018, 362, 799.DOI: 1126/science.aas8961(b) Boyle, B. T.; Hilton, M. C.; McNally, A. J. Am. Chem. Soc.2019, Just Accepted. DOI: 10.1021/jacs.9b08504
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 振動強結合によるイオン伝導度の限界打破に成功
  2. 留学せずに英語をマスターできるかやってみた(4年目)
  3. Chemの論文紹介はじめました
  4. 嘘か真かヒトも重水素化合物をかぎわける
  5. 「化学の匠たち〜情熱と挑戦〜」(日本化学会春季年会市民公開講座)…
  6. その構造、使って大丈夫ですか? 〜創薬におけるアブナいヤツら〜
  7. 総収率57%! 超効率的なタミフルの全合成
  8. 第16回 Student Grant Award 募集のご案内

注目情報

ピックアップ記事

  1. 【書籍】機器分析ハンドブック3 固体・表面分析編
  2. ブロック共重合体で無機ナノ構造を組み立てる
  3. 神経変性疾患関連凝集タンパク質分解誘導剤の開発
  4. ケムステV年末ライブ2023を開催します!
  5. マニュエル・アルカラゾ Manuel Alcarazo
  6. ケムステのライターになって良かったこと
  7. DNAに人工塩基対を組み入れる
  8. キッチン・ケミストリー
  9. 光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応
  10. アノードカップリングにより完遂したテバインの不斉全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー