[スポンサーリンク]

化学者のつぶやき

Pallambins A-Dの不斉全合成

[スポンサーリンク]

保護基を使用しない、pallambins A-Dの不斉全合成が初めて達成された。今後これらのジテルペノイドの生物学的研究、および類似天然物の合成研究に利用されることが期待されるIMG Credit:Board of Trustees, Southern Illinois University

parravicinin, neopallavicinin, pallambins A-D

Parravicinin(1)、neopallavicinin(2)およびpallambins A-D(3–6)は縮環したフロフラノン環を共通してもつ複雑なジテルペノイドである(図1A)。

1, 2は1994年、3–6は2012年にそれぞれクモノスゴケ類から単離された。これらの天然物の生合成経路は浅川らによって提唱され、ラブダン型ジテルペノイドから生合成される(1)。また、3, 4はジラジカルを経由する光転位反応により、5, 6に変換されることがLouらによって示されている(2)
Pallambins A-Dは4–6個の複雑な環構造、7–10個の不斉中心、2個の全炭素四級不斉中心をもつことから、その化学合成は困難を極め、その合成例は数少ない。(±)-3,(±)-4の全合成はWongによって報告されており、Grob開裂に続く分子内アルドール反応によって二環式骨格を構築した(図1B)(3)。(±)-5,(±)-6の全合成はCarreiraによって報告されており、C–H挿入反応が鍵となっている(4)。また、Baran向山アルドール反応を含む11工程で(±)-3, (±)-4の全合成を達成した(5)。しかしながら、不斉合成の例はなくpallanbin類の詳細な生物活性評価には光学活性体の供給が望まれる。
今回北京大学のJia教授は、キラルなシクロへキセノン10から保護基を用いることなく、3, 4および5, 6の不斉全合成をそれぞれ15, 16工程で達成した(図1C)。パラジウム触媒を用いた酸化的な環化による[3.2.1]二環式骨格の構築(I)、Eschenmoser–Claisen転位に続くラクトン形成によるC環の構築(II)、および分子内Wittig反応によるD環の構築(III)が合成の鍵であった。

図1. Parravicin, neopallavicinin, pallambins A-Dとpallambins A-Dの過去の合成例

 

Enantioselective Total Synthesis of Pallambins A-D
Zhang, X.; Cai, X.; Huang, B.; Guo, L.; Gao, Z.; Jia, Y Angew. Chem., Int. Ed. 2019,58, early view.
DOI: 10.1002/anie.201907523

論文著者の紹介

研究者:Yanxing Jia
研究者の経歴:
1993–1997 B. Sc., Chemistry, Lanzhou University Lanzhou, China
1997–2002 Ph.D., Organic Chemistry, Lanzhou University Lanzhou, China(Prof. Yongqiang Tu)
2002–2007 Postdoc, Institute of Chemistry of Natural Substances (ICSN), National Center for Scientific Research (CNRS), France (Prof. Jieping Zhu)
2007–2011 Associate Professor of Medicinal Chemistry (PI), Peking University
2011– Professor of Medicinal Chemistry (PI), Peking University
研究内容:天然物の全合成、医薬品合成、新規合成法の開発

論文の概要

キラルなシクロへキセノン10に対しアリル基を立体選択的に導入し11を得た。その後、パラジウム触媒を用いた11の酸化的環化によって[3.2.1]ビシクロ骨格を構築した。二置換オレフィンのエポキシ化と続く異性化反応を経てアリルアルコール13へと誘導した(6)

次に、13に対し、ジメチルアセトアミドジメチルアセタールを作用させることで、Eschenmoser–Claisen転位が進行し、γ, δ-不飽和アミド14が生成する。14の酸処理によってラクトンを形成し、C環をもつ15を合成した。続く二工程の変換により得られた16とベストマンイリドを反応させることで、分子内Wittig反応が進行し、17を与えた。

その後、α,β-不飽和ラクトンの還元、ケトンのα位のブロモ化を行うことで18へと導いた。18を筆者らが開発したHeck型の酸化条件に附すことで、α,β-不飽和ケトン19とした。このとき、分子内Heck反応が進行した副生物20も得られた。19のエステルのα位にエチリデン基を導入することで3, 4の不斉全合成を達成した。また3, 4の光転位反応により5, 6の不斉全合成も達成した。

図2. Jiaらのpallambins A-Dの不斉全合成

以上、保護基を用いることなくpallambins A-Dの不斉全合成が達成された。今後、これらのジテルペノイドの生物学的研究、および類似した天然物の合成研究への応用が期待される。

参考文献

  1. (a)Toyota, M.; Saito, T.; Asakawa, Y. Chem. Pharm. Bull1998, 46, 178. DOI: 1248/cpb.46.178 (b)Wang, L. N.; Zhang, J. Z.; Li, X.; Wang, X. N.; Xie, C. F.; Zhou. J. C.; Lou, H. X. Org.Lett. 2012, 14, 4. DOI: 10.1021/ol3000124
  2. Zhnag, J. Z.; Zhu, R. X.; Li, G.; Sun, B.; Chen, W. ; Liu, L.; Lou, H. X. Org. Lett2012, 14, 5624. DOI: 10.1021/ol302295a
  3. Xu, X. S.; Li, Z. W.; Zhang, Y. J.; Peng, X. S.; Wong, H. N. C. Chem.Commun., 2012, 48, 8517. DOI: 1039/c2cc34310j
  4. Ebner, C.; Carreira, E. M. Angew. Chem., Int. Ed2015, 54, 11227. DOI: 1002/anie.201505126
  5. Martinez, L. P.; Umemiya, S.; Wengryniuk, S. E.; Baran, P. S. J. Am. Chem. Soc. 2016,738, 7536. DOI: 1021/jacs.6b04816
  6. Chapman, H. A.; Hebal, K.; Motherwell, W. B. Synlett 2010, 595. DOI:1055/s-0029-1219373
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 「温故知新」で医薬品開発
  2. 【4月開催】第七回 マツモトファインケミカル技術セミナー
  3. 【 Web seminar by Microwave Chemi…
  4. 「ソーシャルメディアを活用したスタートアップの価値向上」 Blo…
  5. マイルの寄付:東北地方太平洋沖地震
  6. マテリアルズ・インフォマティクスの基礎から実践技術まで学ぶワンス…
  7. 光照射下に繰り返し運動をおこなう分子集合体
  8. 「無機化学」とはなにか?

注目情報

ピックアップ記事

  1. 【25卒 化学業界就活スタート講座 5月13日(土)Zoomウェビナー開催決定!】化学系学生のための就活×太陽ホールディングス
  2. 【大正製薬】キャリア採用情報(正社員)
  3. ナタリー カロリーナ ロゼロ ナバロ Nataly Carolina Rosero-Navarro
  4. 低分子ゲル化剤の特性・活用と、ゲル化・増粘の基礎【終了】
  5. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2
  6. アメリカ大学院留学:博士候補生になるための関門 Candidacy
  7. 2006年度ノーベル化学賞-スタンフォード大コンバーク教授に授与
  8. ムスカリン muscarine
  9. 「極ワイドギャップ半導体酸化ガリウムの高品質結晶成長」– カリフォルニア大学サンタバーバラ校・Speck研より
  10. 【3/10開催】 高活性酸化触媒の可能性 第1回Wako有機合成セミナー 富士フイルム和光純薬

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP