[スポンサーリンク]

一般的な話題

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

[スポンサーリンク]

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催されたMIT Technology Review主催のEmTech Digitalのパネルディスカッションに登壇したInsitro社Daphne Koller氏によると同社はAIの「生成機械学習」アプローチを科学に応用し、創薬の全自動実験装置を完成させたといいます。

化合物自動生成実験装置 Kebotix Platform

生成機械学習とは別名「敵対的生成ネットワーク」(Generative Adversarial Network,以下GAN)と呼ばれています。GANの生成モデルでは「教師無し」でデータから特徴を抽出し学習することで実在しないデータを作ったり、ふたつのデータを組み合わせて中間的な特徴を持つ新しいデータを生成することが可能です。

Insitro社が用いるのは具体的に、ニューラルネットワークの伝統的なオートエンコーダーという手法です。以下の図では右側の女性、左型の女性の写真のエンコードとデコードを繰り返すことで、両方の特徴を合わせ持つ実在しない「新しい」女性の写真を生成することができるのです。

(出所:EmTech Digital)

 

これを応用すると、創薬における新しい化合物生成に活用することができます。同社の化合物自動生成実験装置はKebotix Platformと名付けられ、新薬に活用できる新しい化合物の生成に大きく貢献しています。

(出所:EmTech Digital)

 

「言語学習」の手法を用いて化学式を読み込み反応を予測

AIと一言で言ってもそのアプローチは様々です。AIによる新薬開発の別の例をご紹介しましょう。

2019年9月の発表によればイギリスのケンブリッジ大学はAIの「言語学習」の手法を用いて化学式を読み込み、新薬生成の際の化合物の反応、効能を予測するアルゴリズムを確立したといいます。その手法を用いると90%以上の正確性で複雑な化学反応の予測ができるようになるとのこと。(原文記事はこちらからAI learns chemistry language to predict how to make medicines”)

このアルゴリズムによって、これまで研究結果を実験室のノートにとってきたものをあらゆる化学反応を予測した「マップ」として管理ができるようになりました。現在もケンブリッジ大学の研究者によってパターン学習の強化が続けられています。

このアルゴリズムによる結果を見ることで、新薬開発に最適な化合物の組み合わせのヒントの発見を圧倒的に短い時間で実現することが可能になると期待されています。

「2020年からはバイオ・テクノロジー・エンジニアリングの時代になる」というInsitro社Koller氏の説明のとおりAIがマーケティングや事務効率化、顧客サービスへの活用のみに留まらず、化学分野で当たり前のように使われる時代はもうすぐそこまで来ているのです。

最先端のAIが学習に要する時間

このような科学分野におけるテクノロジーを支えているのはAIアルゴリズムだけではありません。膨大なデータの蓄積、クレンジング、ガバナンスの効いた管理、そして高い計算能力を持ったコンピューティング開発がその成功を下支えしているのです。

Google社やIBM社が産学協同で開発に力を入れている量子コンピュータ(Quantum Computer)のような大掛かりな演算処理システムの開発から、話題の自動運転を支えるメモリSRAM*といったハードウェアプロセッサの高性能化まで、データ処理と演算を効率的に実装できるシステム開発があってこそ化学分野のAI活用が実現するのです。

Open AIによるとこれまでの傾向として、最先端のAIが学習に要する時間は3. 5カ月ごとに倍増しているといいます。結果、過去5年間でその処理能力は約30万倍にも増加しています。

(出所:Open AI, “AI and Computer”)

 

今後、新薬開発におけるでより多くのデータ量、演算が求められても機械学習能力はその必要に追いつくべくさらなる進化を続けることでしょう。化学分野におけるAIの貢献からはますます目が離せません。

*SRAMに関する詳細の情報はRSコンポーネンツ社サイトから

関連書籍

[amazonjs asin=”4297107406″ locale=”JP” title=”わけがわかる機械学習 ── 現実の問題を解くために、しくみを理解する”][amazonjs asin=”429710640X” locale=”JP” title=”図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書”]
Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 拡張Pummerer反応による簡便な直接ビアリール合成法
  2. 多成分反応で交互ポリペプチドを合成
  3. 消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法…
  4. 有機硫黄ラジカル触媒で不斉反応に挑戦
  5. Mestre NovaでNMRを解析してみよう
  6. お望みの立体構造のジアミン、作ります。
  7. トリテルペノイドの「トリ」!?octanorcucurbitac…
  8. 理系ライターは研究紹介記事をどうやって書いているか

注目情報

ピックアップ記事

  1. エントロピーの悩みどころを整理してみる その1
  2. 【味の素ファインテクノ】新卒採用情報(2026卒)
  3. 官能評価領域におけるマテリアルズ・インフォマティクスの活用とは?
  4. PdCl2(dppf)
  5. 【6月開催】第九回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の密着性向上剤としての利用 -添加剤としての利用-
  6. 2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」
  7. 安達 千波矢 Chihaya Adachi
  8. フロンよりもオゾン層を破壊しているガスがある
  9. 光親和性標識 photoaffinity labeling (PAL)
  10. 化学者のためのエレクトロニクス講座~5Gで活躍する化学メーカー編~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP