[スポンサーリンク]

一般的な話題

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

[スポンサーリンク]

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催されたMIT Technology Review主催のEmTech Digitalのパネルディスカッションに登壇したInsitro社Daphne Koller氏によると同社はAIの「生成機械学習」アプローチを科学に応用し、創薬の全自動実験装置を完成させたといいます。

化合物自動生成実験装置 Kebotix Platform

生成機械学習とは別名「敵対的生成ネットワーク」(Generative Adversarial Network,以下GAN)と呼ばれています。GANの生成モデルでは「教師無し」でデータから特徴を抽出し学習することで実在しないデータを作ったり、ふたつのデータを組み合わせて中間的な特徴を持つ新しいデータを生成することが可能です。

Insitro社が用いるのは具体的に、ニューラルネットワークの伝統的なオートエンコーダーという手法です。以下の図では右側の女性、左型の女性の写真のエンコードとデコードを繰り返すことで、両方の特徴を合わせ持つ実在しない「新しい」女性の写真を生成することができるのです。

(出所:EmTech Digital)

 

これを応用すると、創薬における新しい化合物生成に活用することができます。同社の化合物自動生成実験装置はKebotix Platformと名付けられ、新薬に活用できる新しい化合物の生成に大きく貢献しています。

(出所:EmTech Digital)

 

「言語学習」の手法を用いて化学式を読み込み反応を予測

AIと一言で言ってもそのアプローチは様々です。AIによる新薬開発の別の例をご紹介しましょう。

2019年9月の発表によればイギリスのケンブリッジ大学はAIの「言語学習」の手法を用いて化学式を読み込み、新薬生成の際の化合物の反応、効能を予測するアルゴリズムを確立したといいます。その手法を用いると90%以上の正確性で複雑な化学反応の予測ができるようになるとのこと。(原文記事はこちらからAI learns chemistry language to predict how to make medicines”)

このアルゴリズムによって、これまで研究結果を実験室のノートにとってきたものをあらゆる化学反応を予測した「マップ」として管理ができるようになりました。現在もケンブリッジ大学の研究者によってパターン学習の強化が続けられています。

このアルゴリズムによる結果を見ることで、新薬開発に最適な化合物の組み合わせのヒントの発見を圧倒的に短い時間で実現することが可能になると期待されています。

「2020年からはバイオ・テクノロジー・エンジニアリングの時代になる」というInsitro社Koller氏の説明のとおりAIがマーケティングや事務効率化、顧客サービスへの活用のみに留まらず、化学分野で当たり前のように使われる時代はもうすぐそこまで来ているのです。

最先端のAIが学習に要する時間

このような科学分野におけるテクノロジーを支えているのはAIアルゴリズムだけではありません。膨大なデータの蓄積、クレンジング、ガバナンスの効いた管理、そして高い計算能力を持ったコンピューティング開発がその成功を下支えしているのです。

Google社やIBM社が産学協同で開発に力を入れている量子コンピュータ(Quantum Computer)のような大掛かりな演算処理システムの開発から、話題の自動運転を支えるメモリSRAM*といったハードウェアプロセッサの高性能化まで、データ処理と演算を効率的に実装できるシステム開発があってこそ化学分野のAI活用が実現するのです。

Open AIによるとこれまでの傾向として、最先端のAIが学習に要する時間は3. 5カ月ごとに倍増しているといいます。結果、過去5年間でその処理能力は約30万倍にも増加しています。

(出所:Open AI, “AI and Computer”)

 

今後、新薬開発におけるでより多くのデータ量、演算が求められても機械学習能力はその必要に追いつくべくさらなる進化を続けることでしょう。化学分野におけるAIの貢献からはますます目が離せません。

*SRAMに関する詳細の情報はRSコンポーネンツ社サイトから

関連書籍

[amazonjs asin=”4297107406″ locale=”JP” title=”わけがわかる機械学習 ── 現実の問題を解くために、しくみを理解する”][amazonjs asin=”429710640X” locale=”JP” title=”図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書”]
Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. セルロースナノファイバーの真価【オンライン講座】
  2. 化学でもフェルミ推定
  3. マテリアルズ・インフォマティクスの基礎知識とよくある誤解
  4. 生きた細胞内でケイ素と炭素がはじめて結合!
  5. 構造式を美しく書くために【準備編】
  6. 若手研究者vsノーベル賞受賞者 【化学者とは?!編】
  7. ナノ合金の結晶構造制御法の開発に成功 -革新的材料の創製へ-
  8. 計算化学:DFTって何? PartIII

注目情報

ピックアップ記事

  1. カチオン性三核Pd触媒でC–I結合選択的にカップリングする
  2. 鉄錯体による触媒的窒素固定のおはなし-2
  3. 国際化学オリンピック2016でもメダルラッシュ!
  4. とある農薬のはなし「クロロタロニル」について 
  5. フリーデル・クラフツ アシル化 Friedel-Crafts Acylation
  6. 分子内架橋ポリマーを触媒ナノリアクターへ応用する
  7. ほぅ、そうか!ハッとするC(sp3)–Hホウ素化
  8. 小さなフッ素をどうつまむのか
  9. 生合成研究の記事まとめ
  10. 今年も出ます!サイエンスアゴラ2014

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー