[スポンサーリンク]

一般的な話題

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

[スポンサーリンク]

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催されたMIT Technology Review主催のEmTech Digitalのパネルディスカッションに登壇したInsitro社Daphne Koller氏によると同社はAIの「生成機械学習」アプローチを科学に応用し、創薬の全自動実験装置を完成させたといいます。

化合物自動生成実験装置 Kebotix Platform

生成機械学習とは別名「敵対的生成ネットワーク」(Generative Adversarial Network,以下GAN)と呼ばれています。GANの生成モデルでは「教師無し」でデータから特徴を抽出し学習することで実在しないデータを作ったり、ふたつのデータを組み合わせて中間的な特徴を持つ新しいデータを生成することが可能です。

Insitro社が用いるのは具体的に、ニューラルネットワークの伝統的なオートエンコーダーという手法です。以下の図では右側の女性、左型の女性の写真のエンコードとデコードを繰り返すことで、両方の特徴を合わせ持つ実在しない「新しい」女性の写真を生成することができるのです。

(出所:EmTech Digital)

 

これを応用すると、創薬における新しい化合物生成に活用することができます。同社の化合物自動生成実験装置はKebotix Platformと名付けられ、新薬に活用できる新しい化合物の生成に大きく貢献しています。

(出所:EmTech Digital)

 

「言語学習」の手法を用いて化学式を読み込み反応を予測

AIと一言で言ってもそのアプローチは様々です。AIによる新薬開発の別の例をご紹介しましょう。

2019年9月の発表によればイギリスのケンブリッジ大学はAIの「言語学習」の手法を用いて化学式を読み込み、新薬生成の際の化合物の反応、効能を予測するアルゴリズムを確立したといいます。その手法を用いると90%以上の正確性で複雑な化学反応の予測ができるようになるとのこと。(原文記事はこちらからAI learns chemistry language to predict how to make medicines”)

このアルゴリズムによって、これまで研究結果を実験室のノートにとってきたものをあらゆる化学反応を予測した「マップ」として管理ができるようになりました。現在もケンブリッジ大学の研究者によってパターン学習の強化が続けられています。

このアルゴリズムによる結果を見ることで、新薬開発に最適な化合物の組み合わせのヒントの発見を圧倒的に短い時間で実現することが可能になると期待されています。

「2020年からはバイオ・テクノロジー・エンジニアリングの時代になる」というInsitro社Koller氏の説明のとおりAIがマーケティングや事務効率化、顧客サービスへの活用のみに留まらず、化学分野で当たり前のように使われる時代はもうすぐそこまで来ているのです。

最先端のAIが学習に要する時間

このような科学分野におけるテクノロジーを支えているのはAIアルゴリズムだけではありません。膨大なデータの蓄積、クレンジング、ガバナンスの効いた管理、そして高い計算能力を持ったコンピューティング開発がその成功を下支えしているのです。

Google社やIBM社が産学協同で開発に力を入れている量子コンピュータ(Quantum Computer)のような大掛かりな演算処理システムの開発から、話題の自動運転を支えるメモリSRAM*といったハードウェアプロセッサの高性能化まで、データ処理と演算を効率的に実装できるシステム開発があってこそ化学分野のAI活用が実現するのです。

Open AIによるとこれまでの傾向として、最先端のAIが学習に要する時間は3. 5カ月ごとに倍増しているといいます。結果、過去5年間でその処理能力は約30万倍にも増加しています。

(出所:Open AI, “AI and Computer”)

 

今後、新薬開発におけるでより多くのデータ量、演算が求められても機械学習能力はその必要に追いつくべくさらなる進化を続けることでしょう。化学分野におけるAIの貢献からはますます目が離せません。

*SRAMに関する詳細の情報はRSコンポーネンツ社サイトから

関連書籍

[amazonjs asin=”4297107406″ locale=”JP” title=”わけがわかる機械学習 ── 現実の問題を解くために、しくみを理解する”][amazonjs asin=”429710640X” locale=”JP” title=”図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書”]
Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 有機合成化学協会誌2022年7月号:アニオン性相間移動触媒・触媒…
  2. 【好評につき第二弾】Q&A型ウェビナー マイクロ波化学…
  3. Excelでできる材料開発のためのデータ解析[超入門]-統計の基…
  4. 日本に居ながら、ナマの英語に触れる工夫
  5. CO2の資源利用を目指した新たなプラスチック合成法
  6. 三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へと…
  7. 芳香族化合物のC–Hシリル化反応:第三の手法
  8. 有機合成化学協会誌2019年11月号:英文版特集号

注目情報

ピックアップ記事

  1. クライゼン転位 Claisen Rearrangement
  2. NEC、デスクトップパソコンのデータバックアップが可能な有機ラジカル電池を開発
  3. 米国の博士研究員の最低賃金変更
  4. 映画007シリーズで登場する毒たち
  5. 広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始
  6. 長谷川 美貴 Miki Hasegawa
  7. 水素社会実現に向けた連続フロー合成法を新開発
  8. スティーブ・ケント Stephen B. H. Kent
  9. 第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ
  10. 希望する研究開発職への転職を実現 「短い在籍期間」の不利を克服したビジョンマッチング

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー