天然物アミプリマイシンおよびミハラマイシンの構造が改訂された。従来の合成品と天然物のNMRスペクトルの矛盾も解決することができた。
アミプリマイシンとミハラマイシンの構造決定
アミプリマイシン(1)は1976年にStreptomyces novoguineensisから単離されたペプチジルヌクレオシドであり、稲熱病菌に対する抗菌活性を示す[1]。名古屋大学の後藤らによって1982年に1の1H NMRスペクトルと誘導化により推定構造が提案されたが、C6’位の絶対立体配置は未決定であり、C2”位とC3”位についてもcis型であることしか明らかにされていなかった(図1A)。一方で、1967年にミハラマイシンA(2a)およびB(2b)という1と類似構造をもつ天然物が報告されていた[2]。1983年、東京大学の瀬戸らはアミプリマイシン誘導体(3)との比較により、2がもつジオキサビシクロ[4.3.0]ノナン骨格はシス縮環であると推定した(図1B)。その後2008年にUPMCのBlériotらが、NMRスペクトル解析によりC6’位の絶対立体配置を(S)であると報告した。1980年代以降、この立体構造をもとにした1および2の部分合成が多数報告された。
本論文の著者である上海有機化学研究所のYuらは2018年に1の相対立体配置の完全決定のためC2”位とC3”位に関するジアステレオマー4種類およびそれらのC6’とC8’位エピマーを合成した(計8種類)[3]。しかし、天然物と合成品のNMRスペクトルに明らかな相違が見られたことから、C3’位の立体配置を逆転すべきだと結論付けた。
今回、Yuらは1と2の生合成経路に関連性があると考え、2のC3’位の絶対立体配置も逆でありトランス縮環である可能性を提案した(図1C)。そこで、改めて推定した立体配置をもつ1および2b誘導体(2c)の全合成を達成し、天然物とNMRスペクトルを比較することで全ての不斉炭素における絶対立体配置を決定した。さらに、X線結晶構造解析により天然物の正確な構造が明らかとなった。
“The Miharamycins and Amipurimycin: their Structural Revision and the Total Synthesis of the Latter”
Wang, S.; Zhang, Q.; Zhao, Y.; Sun, J.; Kang, W.; Wang, F.; Pan, H.; Tang, G.; Yu, B. Angew. Chem.,Int. Ed. 2019, 58, 10558.
論文著者の紹介
研究者:Biao Yu (URL: http://biaoyu.sioc.ac.cn/index.asp)
研究者の経歴:
1985-1989 B.S., Department of Technical Physics, Peking University
1989-1995 Ph.D, Shanghai Institute of Organic Chemistry (SIOC)
1995-1996 Postdoc, Department of Chemistry, New York University
1996-1997 Assistant Professor, SIOC
1997-1999 Associate Professor, SIOC
1999- Professor, SIOC
研究内容:糖を含む天然物の全合成、反応開発、ケミカルバイオロジー
論文の概要
Yuらは2018年に合成した1のジアステレオマー8種類と天然物の1H NMRスペクトルを比較した。詳細は論文SIを参照されたいが、H8’(最も天然物との化学シフトが矛盾する)の化学シフトが類似している合成品を選び、1の絶対立体配置は6’S、8’Rとし、2のC8’位も同様にR配置と推定した。さらに1のC2”位、C3”位の立体配置に関しては、この残基と同じ骨格である天然物シスペンタシン(15)が(1R,2S)型のみ単離されていることから、2”R、3”Sであると示唆された[4]。
推定した立体配置に基づき、1および2cの全合成を目指した。D-アラビノース(4)を出発物質とし、3工程で5を合成、続く6とのアルドール反応により単一の立体をもつ7aを与えた(図2)。保護基を変換した7bのC5’位をZn(BH4)2によってヒドリド還元し、立体選択的に二級アルコール8を得た。8より導いたヘミアセタール9からHf(OTf)4を触媒とした環化反応によりピラノース骨格を形成した[3]。10は1,3-ジアキシアル反発のため、いす型配座よりもねじれ舟型配座が安定となる[5]。続いて11のC2’位のヒドロキシ基を酸化、立体選択的に還元することで12、12から2工程で合成した13のC1’位にプリン塩基骨格を導入し、共通中間体14を得た。最後に、15もしくはアルギニン骨格16と14のC6’位のアミン部位を縮合し、保護基を除去することでアミプリマイシン(1)および4’-デオキシミハラマイシンB(2c)の全合成を達成した。合成した1と2cのNMRスペクトルは天然物とよく一致し、X線結晶構造解析によって立体構造を最終決定した[6]。
以上、天然物の全合成により、約30年前に報告されたそれらの立体構造を改訂することに成功した。これらの生合成経路は現在関心が高まっており[7]、今回の結果が解明の助けとなるに違いない。
参考文献
- (a) Iwasa, T.; Kishi, T.; Matsuura, K.; Wakae, O. J. Antibiot. 1977, 30, 1. DOI: 10.7164/antibiotics.30.1(b) Harada, S.; Kishi, T. J. Antibiot.1977, 30, 11. DOI: 10.7164/antibiotics.30.11(c) Goto, T.; Toya, Y.; Ohgi, T.; Kondo, T. Tetrahedron Lett. 1982, 23, 1271. DOI: 10.1016/S0040-4039(00)87080-X
- (a) Noguchi, T.; Yasuda, Y.; Niida, T.; Shomura, T. Ann. Phytopath. Soc. Jpn.1968, 34, 323. DOI: 10.3186/jjphytopath.34.323(b) Seto, H.; Koyama, M.; Ogino H.; Tsuruoka, T.; Inouye, S.; Otake, N. Tetrahedron Lett.1983, 24, 1805. DOI: 10.1016/S0040-4039(00)81775-X
- Wang, S.; Sun, J.; Zhang, Q.; Cao, X.; Zhao, Y.; Tang, G.; Yu, B. Angew. Chem., Int. Ed. 2018, 57, 2884. DOI: 10.1002/anie.201800169
- Kawabata, K.; Inamoto, Y.; Sakane, K.; Iwamoto, T.; Hashimoto, S. J. Antibiot.1990, 43, 513. DOI: 10.7164/antibiotics.43.513
- Markad, P. R.; Kumbhar, N.; Dhavale, D. D. Beilstein J. Org. Chem. 2016, 12, DOI: 10.3762/bjoc.12.165
- 合成品2cと天然物2bは1H NMRスペクトルのJ値(H2’, H8’, H9’)を比較した。また、X線結晶構造解析には自身で単離した天然物1および2bを用いた。
- (a) Kang, W.-J.; Pan, H.-X.; Wang, S.; Yu, B.; Hua, H.; Tang, G.-L. Lett.2019, 21, 3148. DOI: 10.1021/acs.orglett.9b00840(b) Romo, A. J.; Shiraishi, T.; Ikeuchi, H.; Lin, G.-M.; Geng, Y..; Lee, Y.-H.; Liem, P. H.; Ma, T.; Ogasawara, Y.; Shin-ya, K.; Nishiyama, M.; Kuzuyama, T.; Liu, H.-w.J. Am. Chem. Soc. 2019,Just Accepted Manuscript. DOI: 10.1021/jacs.9b03021