[スポンサーリンク]

化学者のつぶやき

天然物の構造改訂:30年間信じられていた立体配置が逆だった

[スポンサーリンク]

天然物アミプリマイシンおよびミハラマイシンの構造が改訂された。従来の合成品と天然物のNMRスペクトルの矛盾も解決することができた。

アミプリマイシンとミハラマイシンの構造決定

アミプリマイシン(1)は1976年にStreptomyces novoguineensisから単離されたペプチジルヌクレオシドであり、稲熱病菌に対する抗菌活性を示す[1]。名古屋大学の後藤らによって1982年に11H NMRスペクトルと誘導化により推定構造が提案されたが、C6’位の絶対立体配置は未決定であり、C2”位とC3”位についてもcis型であることしか明らかにされていなかった(図1A)。一方で、1967年にミハラマイシンA(2a)およびB(2b)という1と類似構造をもつ天然物が報告されていた[2]。1983年、東京大学の瀬戸らはアミプリマイシン誘導体(3)との比較により、2がもつジオキサビシクロ[4.3.0]ノナン骨格はシス縮環であると推定した(図1B)。その後2008年にUPMCのBlériotらが、NMRスペクトル解析によりC6’位の絶対立体配置を(S)であると報告した。1980年代以降、この立体構造をもとにした1および2の部分合成が多数報告された。
本論文の著者である上海有機化学研究所のYuらは2018年に1の相対立体配置の完全決定のためC2”位とC3”位に関するジアステレオマー4種類およびそれらのC6’とC8’位エピマーを合成した(計8種類)[3]。しかし、天然物と合成品のNMRスペクトルに明らかな相違が見られたことから、C3’位の立体配置を逆転すべきだと結論付けた。
今回、Yuらは12の生合成経路に関連性があると考え、2のC3’位の絶対立体配置も逆でありトランス縮環である可能性を提案した(図1C)。そこで、改めて推定した立体配置をもつ1および2b誘導体(2c)の全合成を達成し、天然物とNMRスペクトルを比較することで全ての不斉炭素における絶対立体配置を決定した。さらに、X線結晶構造解析により天然物の正確な構造が明らかとなった。

図1. (A) 以前の推定構造 (B) 改訂後の絶対立体配置

 

“The Miharamycins and Amipurimycin: their Structural Revision and the Total Synthesis of the Latter”

Wang, S.; Zhang, Q.; Zhao, Y.; Sun, J.; Kang, W.; Wang, F.; Pan, H.; Tang, G.; Yu, B. Angew. Chem.,Int. Ed. 2019, 58, 10558.

DOI: 10.1002/anie.201905723

論文著者の紹介

研究者:Biao Yu (URL: http://biaoyu.sioc.ac.cn/index.asp)
研究者の経歴:
1985-1989 B.S., Department of Technical Physics, Peking University
1989-1995 Ph.D, Shanghai Institute of Organic Chemistry (SIOC)
1995-1996 Postdoc, Department of Chemistry, New York University
1996-1997 Assistant Professor, SIOC
1997-1999 Associate Professor, SIOC
1999- Professor, SIOC
研究内容:糖を含む天然物の全合成、反応開発、ケミカルバイオロジー

論文の概要

Yuらは2018年に合成した1のジアステレオマー8種類と天然物の1H NMRスペクトルを比較した。詳細は論文SIを参照されたいが、H8’(最も天然物との化学シフトが矛盾する)の化学シフトが類似している合成品を選び、1の絶対立体配置は6’S、8’Rとし、2のC8’位も同様にR配置と推定した。さらに1のC2”位、C3”位の立体配置に関しては、この残基と同じ骨格である天然物シスペンタシン(15)が(1R,2S)型のみ単離されていることから、2”R、3”Sであると示唆された[4]
推定した立体配置に基づき、1および2cの全合成を目指した。D-アラビノース(4)を出発物質とし、3工程で5を合成、続く6とのアルドール反応により単一の立体をもつ7aを与えた(図2)。保護基を変換した7bのC5’位をZn(BH4)2によってヒドリド還元し、立体選択的に二級アルコール8を得た。8より導いたヘミアセタール9からHf(OTf)4を触媒とした環化反応によりピラノース骨格を形成した[3]10は1,3-ジアキシアル反発のため、いす型配座よりもねじれ舟型配座が安定となる[5]。続いて11のC2’位のヒドロキシ基を酸化、立体選択的に還元することで1212から2工程で合成した13のC1’位にプリン塩基骨格を導入し、共通中間体14を得た。最後に、15もしくはアルギニン骨格1614のC6’位のアミン部位を縮合し、保護基を除去することでアミプリマイシン(1)および4’-デオキシミハラマイシンB(2c)の全合成を達成した。合成した12cのNMRスペクトルは天然物とよく一致し、X線結晶構造解析によって立体構造を最終決定した[6]

図2. アミプリマイシン(1)および4’-デオキシミハラマイシンB(2c)の全合成とX線結晶構造(論文より引用)

 

以上、天然物の全合成により、約30年前に報告されたそれらの立体構造を改訂することに成功した。これらの生合成経路は現在関心が高まっており[7]、今回の結果が解明の助けとなるに違いない。

参考文献

  1. (a) Iwasa, T.; Kishi, T.; Matsuura, K.; Wakae, O. J. Antibiot. 1977, 30, 1. DOI: 10.7164/antibiotics.30.1(b) Harada, S.; Kishi, T. J. Antibiot.1977, 30, 11. DOI: 10.7164/antibiotics.30.11(c) Goto, T.; Toya, Y.; Ohgi, T.; Kondo, T. Tetrahedron Lett. 1982, 23, 1271. DOI: 10.1016/S0040-4039(00)87080-X
  2. (a) Noguchi, T.; Yasuda, Y.; Niida, T.; Shomura, T. Ann. Phytopath. Soc. Jpn.1968, 34, 323. DOI: 10.3186/jjphytopath.34.323(b) Seto, H.; Koyama, M.; Ogino H.; Tsuruoka, T.; Inouye, S.; Otake, N. Tetrahedron Lett.1983, 24, 1805. DOI: 10.1016/S0040-4039(00)81775-X
  3. Wang, S.; Sun, J.; Zhang, Q.; Cao, X.; Zhao, Y.; Tang, G.; Yu, B. Angew. Chem., Int. Ed. 2018, 57, 2884. DOI: 10.1002/anie.201800169
  4. Kawabata, K.; Inamoto, Y.; Sakane, K.; Iwamoto, T.; Hashimoto, S. J. Antibiot.1990, 43, 513. DOI: 10.7164/antibiotics.43.513
  5. Markad, P. R.; Kumbhar, N.; Dhavale, D. D. Beilstein J. Org. Chem. 2016, 12, DOI: 10.3762/bjoc.12.165
  6. 合成品2cと天然物2b1H NMRスペクトルのJ値(H2’, H8’, H9’)を比較した。また、X線結晶構造解析には自身で単離した天然物1および2bを用いた。
  7. (a) Kang, W.-J.; Pan, H.-X.; Wang, S.; Yu, B.; Hua, H.; Tang, G.-L. Lett.2019, 21, 3148. DOI: 10.1021/acs.orglett.9b00840(b) Romo, A. J.; Shiraishi, T.; Ikeuchi, H.; Lin, G.-M.; Geng, Y..; Lee, Y.-H.; Liem, P. H.; Ma, T.; Ogasawara, Y.; Shin-ya, K.; Nishiyama, M.; Kuzuyama, T.; Liu, H.-w.J. Am. Chem. Soc. 2019,Just Accepted Manuscript. DOI: 10.1021/jacs.9b03021
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 2019年ケムステ人気記事ランキング
  2. 乙卯研究所 研究員募集
  3. Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵…
  4. 死刑囚によるVXガスに関する論文が掲載される
  5. ロタキサンを用いた機械的刺激に応答する効率的な分子放出
  6. 第31回Vシンポ「精密有機構造解析」を開催します!
  7. 金属スカベンジャーを試してみた
  8. Nitrogen Enriched Gasoline・・・って何…

注目情報

ピックアップ記事

  1. 論説フォーラム「研究の潮目が変わったSDGsは化学が主役にーさあ、始めよう!」
  2. ガ求愛行動:性フェロモンを解明 東大など
  3. ウォール・チーグラー臭素化 Wohl-Ziegler Bromination
  4. みんなおなじみ DMSO が医薬品として承認!
  5. 田辺製薬、エイズ関連治療薬「バリキサ錠450mg」を発売
  6. 産官学の深耕ー社会への発信+若い力への後押しー第1回CSJ化学フェスタ
  7. マイクロフロー瞬間pHスイッチによるアミノ酸NCAの高効率合成
  8. 快適な研究環境を!実験イス試してみた
  9. ペプチド模倣体としてのオキセタニルアミノ酸
  10. 光レドックス触媒と有機分子触媒の協同作用

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP