[スポンサーリンク]

化学者のつぶやき

天然物の構造改訂:30年間信じられていた立体配置が逆だった

[スポンサーリンク]

天然物アミプリマイシンおよびミハラマイシンの構造が改訂された。従来の合成品と天然物のNMRスペクトルの矛盾も解決することができた。

アミプリマイシンとミハラマイシンの構造決定

アミプリマイシン(1)は1976年にStreptomyces novoguineensisから単離されたペプチジルヌクレオシドであり、稲熱病菌に対する抗菌活性を示す[1]。名古屋大学の後藤らによって1982年に11H NMRスペクトルと誘導化により推定構造が提案されたが、C6’位の絶対立体配置は未決定であり、C2”位とC3”位についてもcis型であることしか明らかにされていなかった(図1A)。一方で、1967年にミハラマイシンA(2a)およびB(2b)という1と類似構造をもつ天然物が報告されていた[2]。1983年、東京大学の瀬戸らはアミプリマイシン誘導体(3)との比較により、2がもつジオキサビシクロ[4.3.0]ノナン骨格はシス縮環であると推定した(図1B)。その後2008年にUPMCのBlériotらが、NMRスペクトル解析によりC6’位の絶対立体配置を(S)であると報告した。1980年代以降、この立体構造をもとにした1および2の部分合成が多数報告された。
本論文の著者である上海有機化学研究所のYuらは2018年に1の相対立体配置の完全決定のためC2”位とC3”位に関するジアステレオマー4種類およびそれらのC6’とC8’位エピマーを合成した(計8種類)[3]。しかし、天然物と合成品のNMRスペクトルに明らかな相違が見られたことから、C3’位の立体配置を逆転すべきだと結論付けた。
今回、Yuらは12の生合成経路に関連性があると考え、2のC3’位の絶対立体配置も逆でありトランス縮環である可能性を提案した(図1C)。そこで、改めて推定した立体配置をもつ1および2b誘導体(2c)の全合成を達成し、天然物とNMRスペクトルを比較することで全ての不斉炭素における絶対立体配置を決定した。さらに、X線結晶構造解析により天然物の正確な構造が明らかとなった。

図1. (A) 以前の推定構造 (B) 改訂後の絶対立体配置

 

“The Miharamycins and Amipurimycin: their Structural Revision and the Total Synthesis of the Latter”

Wang, S.; Zhang, Q.; Zhao, Y.; Sun, J.; Kang, W.; Wang, F.; Pan, H.; Tang, G.; Yu, B. Angew. Chem.,Int. Ed. 2019, 58, 10558.

DOI: 10.1002/anie.201905723

論文著者の紹介

研究者:Biao Yu (URL: http://biaoyu.sioc.ac.cn/index.asp)
研究者の経歴:
1985-1989 B.S., Department of Technical Physics, Peking University
1989-1995 Ph.D, Shanghai Institute of Organic Chemistry (SIOC)
1995-1996 Postdoc, Department of Chemistry, New York University
1996-1997 Assistant Professor, SIOC
1997-1999 Associate Professor, SIOC
1999- Professor, SIOC
研究内容:糖を含む天然物の全合成、反応開発、ケミカルバイオロジー

論文の概要

Yuらは2018年に合成した1のジアステレオマー8種類と天然物の1H NMRスペクトルを比較した。詳細は論文SIを参照されたいが、H8’(最も天然物との化学シフトが矛盾する)の化学シフトが類似している合成品を選び、1の絶対立体配置は6’S、8’Rとし、2のC8’位も同様にR配置と推定した。さらに1のC2”位、C3”位の立体配置に関しては、この残基と同じ骨格である天然物シスペンタシン(15)が(1R,2S)型のみ単離されていることから、2”R、3”Sであると示唆された[4]
推定した立体配置に基づき、1および2cの全合成を目指した。D-アラビノース(4)を出発物質とし、3工程で5を合成、続く6とのアルドール反応により単一の立体をもつ7aを与えた(図2)。保護基を変換した7bのC5’位をZn(BH4)2によってヒドリド還元し、立体選択的に二級アルコール8を得た。8より導いたヘミアセタール9からHf(OTf)4を触媒とした環化反応によりピラノース骨格を形成した[3]10は1,3-ジアキシアル反発のため、いす型配座よりもねじれ舟型配座が安定となる[5]。続いて11のC2’位のヒドロキシ基を酸化、立体選択的に還元することで1212から2工程で合成した13のC1’位にプリン塩基骨格を導入し、共通中間体14を得た。最後に、15もしくはアルギニン骨格1614のC6’位のアミン部位を縮合し、保護基を除去することでアミプリマイシン(1)および4’-デオキシミハラマイシンB(2c)の全合成を達成した。合成した12cのNMRスペクトルは天然物とよく一致し、X線結晶構造解析によって立体構造を最終決定した[6]

図2. アミプリマイシン(1)および4’-デオキシミハラマイシンB(2c)の全合成とX線結晶構造(論文より引用)

 

以上、天然物の全合成により、約30年前に報告されたそれらの立体構造を改訂することに成功した。これらの生合成経路は現在関心が高まっており[7]、今回の結果が解明の助けとなるに違いない。

参考文献

  1. (a) Iwasa, T.; Kishi, T.; Matsuura, K.; Wakae, O. J. Antibiot. 1977, 30, 1. DOI: 10.7164/antibiotics.30.1(b) Harada, S.; Kishi, T. J. Antibiot.1977, 30, 11. DOI: 10.7164/antibiotics.30.11(c) Goto, T.; Toya, Y.; Ohgi, T.; Kondo, T. Tetrahedron Lett. 1982, 23, 1271. DOI: 10.1016/S0040-4039(00)87080-X
  2. (a) Noguchi, T.; Yasuda, Y.; Niida, T.; Shomura, T. Ann. Phytopath. Soc. Jpn.1968, 34, 323. DOI: 10.3186/jjphytopath.34.323(b) Seto, H.; Koyama, M.; Ogino H.; Tsuruoka, T.; Inouye, S.; Otake, N. Tetrahedron Lett.1983, 24, 1805. DOI: 10.1016/S0040-4039(00)81775-X
  3. Wang, S.; Sun, J.; Zhang, Q.; Cao, X.; Zhao, Y.; Tang, G.; Yu, B. Angew. Chem., Int. Ed. 2018, 57, 2884. DOI: 10.1002/anie.201800169
  4. Kawabata, K.; Inamoto, Y.; Sakane, K.; Iwamoto, T.; Hashimoto, S. J. Antibiot.1990, 43, 513. DOI: 10.7164/antibiotics.43.513
  5. Markad, P. R.; Kumbhar, N.; Dhavale, D. D. Beilstein J. Org. Chem. 2016, 12, DOI: 10.3762/bjoc.12.165
  6. 合成品2cと天然物2b1H NMRスペクトルのJ値(H2’, H8’, H9’)を比較した。また、X線結晶構造解析には自身で単離した天然物1および2bを用いた。
  7. (a) Kang, W.-J.; Pan, H.-X.; Wang, S.; Yu, B.; Hua, H.; Tang, G.-L. Lett.2019, 21, 3148. DOI: 10.1021/acs.orglett.9b00840(b) Romo, A. J.; Shiraishi, T.; Ikeuchi, H.; Lin, G.-M.; Geng, Y..; Lee, Y.-H.; Liem, P. H.; Ma, T.; Ogasawara, Y.; Shin-ya, K.; Nishiyama, M.; Kuzuyama, T.; Liu, H.-w.J. Am. Chem. Soc. 2019,Just Accepted Manuscript. DOI: 10.1021/jacs.9b03021
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  2. 第6回慶應有機化学若手シンポジウム
  3. 総収率57%! 超効率的なタミフルの全合成
  4. 虫歯とフッ素のお話① ~どうして歯磨きにフッ素が使われるの??~…
  5. 日常臨床検査で測定する 血清酵素の欠損症ーChemical Ti…
  6. ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞…
  7. 光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす
  8. 神秘的な海の魅力的アルカロイド

注目情報

ピックアップ記事

  1. Density Functional Theory in Quantum Chemistry
  2. 井上 佳久 Yoshihisa Inoue
  3. ヒト遺伝子の ヒット・ランキング
  4. 2009年人気記事ランキング
  5. 免疫不応答の抗原抗体反応を利用できるハプテン標識化試薬
  6. 摩訶不思議なルイス酸・トリス(ペンタフルオロフェニル)ボラン
  7. 大学院生になっても宿題に追われるってどないなんだが?【アメリカでPh.D.を取る–コースワークの巻–】
  8. ライセルト インドール合成 Reissert Indole Synthesis
  9. 青色LEDで駆動する銅触媒クロスカップリング反応
  10. 相田卓三教授の最終講義をYouTube Live配信!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー