世の中に存在するほとんどの陶磁器の釉薬の組成はケイ酸が大部分を占めており、このケイ酸がネットワークを組んでいます。さて、釉薬の組成を表す一般式であるゼーゲル式は以下の通りです。軽めのゼーゲル式の説明はこの記事内にあります。
aR2O / bRO } xAl2O3・ySiO2 ただしa+b=1
大抵の場合、y はxに比べ数倍大きな値を取るように調合します。ケイ酸の方が全然多いということです。本記事ではとりあえずアルミニウムのことは置いておき、ケイ酸がどんな構造をとっているのか、Rすなわちアルカリ金属がどんな働きをするのかについてお話致します。私の落書き付きです。
ケイ酸ネットワーク
以下にケイ酸ネットワークの平面構造(落書き①)を示します。大きな白丸がSiで小さな赤丸がOです。(実際は三次元的にSiとOが繋がっていますが省略しています。)釉薬は基本的な構造はケイ酸のアモルファスなのです。一度1300℃に近い環境で焼成され、そこから冷却されていく過程でガラス転移温度を下回り、ガラスとなった状態ですね。Siに着目してやれば5員環、6員環、7員環…と、様々な構造をとっていることがわかります。ただしSiは三次元的に見てやれば、更に二つの酸素と手をつないで四面体構造をとっていますので、組成としてはSiO2です。
アルカリ金属たちは?
釉薬にはカリウムKやナトリウムNaなどのアルカリ金属や、マグネシウムMgやカルシウムCaなどのアルカリ土類金属も含まれます。こいつらは釉薬中ではカチオンとしてケイ酸ネットワークの隙間に入り込みます。下に落書き②を示します。橙丸は金属カチオンを表しています。カチオンが入り込むと電気的な不安定さを解消するために、一部の酸素はSiと手をつながずに、酸素アニオンとなるやつがでてきます。こうしてネットワークに亀裂が生まれるのです。二酸化ケイ素の融点は1600℃以上にもなります。やきものは高くても1300℃程度で焼けて欲しいものです。アルカリ分たちは融点降下の効果があるってことです。
なお、一価のカチオンなのか二価なのか、あるいは第何周期なのか(イオン半径はどの程度か)という違いでも、釉薬自体の機械強度や融点も変わってきます。下に最後の落書き③を示します。ナトリウムイオンよりイオン半径の大きいカリウムイオンのほうがよりケイ酸ネットワークを押し広げ、釉薬を’弱く’させそうなことが想像できますね。
Na+は第三周期でMg2+も同じ第三周期ですから、後者の方が電荷密度が大きく、よりケイ酸構造を引き締めたりするわけですよ。同じ周期だとそういう違いがあったりします。そういうことをなんとなく考えながらNa多めの長石(ソーダ長石なんて陶芸家は呼びます)にするか、K多めの長石(カリ長石)にするか、あるいはその中間をとるか、なんてことを決めて釉薬作りに励むのです。
ちなみに、Siのようにアモルファスに単体でなることができるようなものをglass network formerと呼んだりすることがあります。ナトリウムやカリウムはそれ単体としてアモルファス固体になるには厳しいですからガラスのネットワークの隙間に入り込んだりしています。これらは、glass network modifierと呼ばれたりします。
最後に
今回はこの辺でお終いです。陶磁器をご使用になる前に、そうか!隙間に軽い金属のカチオンが隠れているのか!って思いながら眺めてやってください。
参考文献
- 高嶋廣夫著,’陶磁器釉の科学’,株式会社内田老鶴圃(1994).