[スポンサーリンク]

スポットライトリサーチ

引っ張ると白色蛍光を示すゴム材料

[スポンサーリンク]

第204回のスポットライトリサーチは、北海道大学電子科学研究所 助教・相良 剛光 先生にお願いしました。

相良先生は、力学的刺激に可逆応答する機能部位を組み込む材料創製研究に従事しています。今回開発された材料は、蛍光性が伸縮によって変化するものであり、動画をご覧いただければ、インパクトは一目瞭然かと思います。本成果は留学先(Adolphe Markle Institute・Christoph Weder研究室)での取り組みが結実したものです。今回の成果はACS Central Science誌にオープンアクセス論文として掲載され、またプレスリリースもされています。

“Rotaxane-Based Mechanophores Enable Polymers with Mechanically Switchable White Photoluminescence”
Sagara, Y.*; Karman, M.;  Seki, A.;  Pannipara, M.; Tamaoki, M.; Weder, C.* ACS Cent. Sci. 2019, 55, 874-881. doi:10.1021/acscentsci.9b00173

それでは、相良先生のインタビューをご覧下さい!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

近年、主に高分子化学の分野で、機械的刺激に応答して吸収・発光特性が変化するメカノフォアと呼ばれる分子骨格が盛んに研究されています。しかし、既報のメカノフォアでは、吸収・発光特性を変化させるために共有結合を切断する必要があり、可逆性に乏しく、activationに必要になる力が大きいといった、用途によっては欠点となる性質がありました。このような背景を受け、我々はインターロック構造を持つ超分子の一つであるロタキサンに着目し、共有結合を切断することなくactivationできる超分子メカノフォア(図1)を開発することに成功しました。今回の研究では、ロタキサンに導入した蛍光団を単純に他の蛍光団に変更するだけで、同様の動作原理で瞬時かつ可逆的に青色、緑色、橙色の蛍光色のOn/Offスイッチができることを実証しました(図2)。加えて、これらの異なる蛍光色を示すポリウレタンエラストマーを適切な割合で混合すれば、白色蛍光のOn/Offスイッチを達成できることを示しました(上の動画参照)。

図1.ロタキサン型超分子メカノフォアの動作原理

図2.様々な蛍光On/Offスイッチを示すポリウレタンエラストマー

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

実は、本当に思い入れがあるのは、今回のプレスリリースの研究内容ではありません。やはり、本研究の基になったプロトタイプのロタキサン型超分子メカノフォア[1]を、何回も何回も試行錯誤を繰り返して実現するまでの過程が一番大変でしたし、強い思い入れがあります。先行研究で作製したポリウレタンフィルムを引っ張り、明らかな蛍光強度変化が観察されたときは、本当に手が震えました。今回の白色蛍光の研究は「まぁ、他の蛍光団でもできるっしょ?」と思っていた程度です(それぞれの蛍光団を含むロタキサンの合成には時間がかかって、本当に大変なんですが・・・)。むしろ、単純に蛍光団を変えただけですと、いい雑誌には掲載されませんので、少しアクセントを加えようとして、白色発光を目指したというのが実のところです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

白色蛍光を実現するためには、青色・緑色・橙色の蛍光をそれぞれ示す、三種類のポリウレタンを適切な割合で混合することが重要です。実は、この最適な混合比を見つけるのが、思っていた以上に大変でした。溶液での簡単な混合実験で、今回用いた三種の蛍光団を混ぜれば白色蛍光を実現できることは既にわかっていました。しかし、一般に、希薄溶液中で孤立した状態の分子の蛍光特性が、分子が高濃度で存在するバルク材料の蛍光特性にそのまま反映されることはまずありません。今回のエラストマーでは、π共役を拡張したピレンやアントラセン誘導体の蛍光波長がDCM誘導体の吸収帯と完全に重なり、青色・緑色蛍光の一部が内部で吸収されてしまうので、青色、緑色の蛍光を示すポリウレタンを多く混合する必要がありました。論文中では、白色蛍光であることの証明にCIE色度図を用いていますが、少しでも混合比が異なった場合、理想的な白色蛍光の位置 (x,y) = (0.33,0.33) から大きく外れてしまいます。本当にたくさんのtrials & errorsを経て、ようやく最適な混合比を見つけることができました。

Q4. 将来は化学とどう関わっていきたいですか?

もともと、私は結晶性の機械的刺激応答性発光材料[2]を見出して以来、研究対象を液晶[3]、ミセル[4]、そして今回のロタキサンなど幅広く変えながら、長らく機械的刺激に応答して発光特性が変化する材料を開発してきました。将来的には、今までに得てきた知識を包括的に統合運用(?)することで、「機械的刺激によって発光特性が変化するという現象」を巧みに利用した、真に我々人類の役に立つ分子技術を開発したいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

本研究の基となった、プロトタイプのロタキサン型超分子メカノフォアは、私がスイスのAdolphe Markle InstituteのChristoph Weder教授の所に留学していたときの研究成果が基になっています。海外で何のしがらみもなく、自分の発案した研究テーマに没頭する経験は、自立した研究者として進んでいく際に、大きくプラスになると思います(もちろん、デメリットもあるとは思いますが)。
また、研究が年単位で上手くいかないときには、本当に心が折れそうになります。しかし、それを乗り越えて格別な成果が得られた時の瞬間は、何物にも代えがたいものがあります。若い研究者の皆様には、是非、このような経験をして頂ければと思います。
最後に、本研究を遂行する機会を与えて下さったChristoph Weder教授、そして測定・合成等を手伝ってくれた皆様に感謝を申し上げ、本寄稿の結びとさせていただきます。

参考文献

  1. Y. Sagara, M. Karman, E. Verde-Sesto, K. Matsuo, Y. Kim, N. Tamaoki, C. Weder, J. Am. Chem. Soc. 2018, 140, 1584.
  2. Y. Sagara, T. Mutai, I. Yoshikawa, K. Araki, J. Am. Chem. Soc. 2007, 129, 1520.
  3. Y. Sagara, T. Kato, Angew. Chem. Int. Ed. 2008, 47, 5175-5178.
  4. Y. Sagara, T. Komatsu, T. Ueno, K. Hanaoka, T. Kato, T. Nagano, J. Am. Chem. Soc. 2014, 136, 4273.

研究者の略歴

【名前】 相良 剛光 (さがら よしみつ)
【所属】
北海道大学 電子科学研究所 助教
科学技術振興機構 さきがけ研究者 兼任
【研究テーマ】 ざっくりいうと、「力で吸収・発光特性が変化する機能性材料の開発」

【略歴】
2004.3.  東京大学 工学部 化学生命工学科卒業 (加藤 隆史 教授)
2006.3.  東京大学大学院 工学系研究科 化学生命工学専攻修士課程 修了(荒木 孝二 教授)
2009.3.  東京大学大学院 工学系研究科 化学生命工学専攻博士後期課程 修了 (加藤 隆史 教授)
2009.4. ~ 2010.3. 加藤研で日本学術振興会特別研究員PD (DC2より資格変更)として勤務
2010.4. ~ 2013.6. 東京大学大学院 薬学系研究科 薬品代謝化学教室 (長野 哲雄 教授)で、日本学術振興会特別研究員PD +特任研究員として勤務
2013.7. ~ 2015.6. スイスのAdolphe Merkle Institute, University of Fribourg(Prof. Christoph Weder)で、日本学術振興会海外特別研究員として勤務
2015.7. ~ 現在 北海道大学 電子科学研究所 スマート分子材料研究分野 (玉置 信之 教授)で助教として勤務
2017.10. ~ 現在 さきがけ研究者(兼任)「光の極限制御・積極利用と新分野開拓」領域
【個人HP】https://ysagara-mechano.wixsite.com/mysite

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【5月開催】第八回 マツモトファインケミカル技術セミナー 有機金…
  2. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくあ…
  3. ラジカルパスでアリールをホウ素から炭素へパス!
  4. 巨大ポリエーテル天然物「ギムノシン-A」の全合成
  5. 還元的にアルケンを炭素官能基で修飾する
  6. イオン交換が分子間電荷移動を駆動する協奏的現象の発見
  7. ビニル位炭素-水素結合への形式的分子内カルベン挿入
  8. 磁石でくっつく新しい分子模型が出資募集中

注目情報

ピックアップ記事

  1. Semiconductor Photocatalysis: Principles and Applications
  2. trans-2-[3-(4-tert-ブチルフェニル)-2-メチル-2-プロペニリデン]マロノニトリル : trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile
  3. 日本薬学会第144回年会「有機合成化学の若い力」を開催します!
  4. 水素化ナトリウムの酸化反応をブロガー・読者がこぞって追試!?
  5. OIST Science Challenge 2025 に参加しました
  6. アミロイド認識で活性を示す光触媒の開発:アルツハイマー病の新しい治療法へ
  7. ガッターマン・コッホ反応 Gattermann-Koch Reaction
  8. MALDI-ToF MSを使用してCOVID-19ウイルスの鼻咽頭拭い液からの検出に成功
  9. 「オープンソース・ラボウェア」が変える科学の未来
  10. アメリカ大学院留学:TAの仕事

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー