[スポンサーリンク]

化学者のつぶやき

創薬化学における「フッ素のダークサイド」

[スポンサーリンク]

フッ素は全元素中最大の電気陰性度を有するなど、化学的物性値に外れ値を示す事が多く、元素として特殊な扱いが成されます。

これを医薬構造中に入れこむことで、薬効を調節したり、疎水性を高めたり、代謝安定性を改善したり、動態追跡のPET応用に用いたり・・・などの良い効果があるとされています[1]。この有用性から「分子にフッ素を効率良く導入する反応」が歴史的にも沢山開発されてきています[2]。

しかしその一方で、フッ化医薬構造の分解により予期せぬ悪影響が生じてしまうことも指摘されています。この事例をNovartis社の研究員がまとめておりましたので、今回はこれを取り上げてみます。

”The Dark Side of Fluorine”
Pan, Y.  ACS Med. Chem. Lett. 2019, DOI: 10.1021/acsmedchemlett.9b00235

フッ化構造分解による悪影響

C-F結合は切れづらく(BDE=109 kcal/mol)、酸化的代謝も受けづらいため、とくに医薬構造に含まれる弱い結合を代替する目的で導入されます。

しかしながら耐性をもつのは均等開裂条件に対してであり、フッ素アニオンとして脱離していく不均等開裂条件に対しては案外脆いところがあります。壊れた骨格が毒性代謝物として働いたり、フッ素アニオンが骨集積することで、様々な副作用のもとになります。

SN2反応を介して分解する例

下記は生理的条件下で加水分解を起こしたり、生体内グルタチオンとの置換反応を起こしたりする構造例です。特に分子内に求核部位を持つ構造、ベンジル位やアリル位のように活性化されたC-F結合をもつ化合物の場合は注意が必要です。こういった傾向は立体障害基の導入に加え、ジフルオロメチル基・トリフルオロメチル基にすげ替えることで減ずることができるようです。

ヘテロ原子の非共有電子対関与で分解する例

非共有電子対の関与によってカルボカチオンが安定化される構造においては、CーF結合の分解が見られます。ビニロガス位のような遠隔でも効いてくるので要注意。窒素上への電子求引基の導入によってある程度抑制が可能です。

酸化的代謝がトリガーとなって分解する例

酸化的代謝がトリガーとなってフッ化水素を放出する経路も考えられます。 代謝物がしばしばマイケルアクセプター様構造となることも相まって、CYP阻害やグルタチオン付加体などの形成につながります。代謝標的になる水素をメチル化するなどの対応が取られます。

2-フルオロエチル基や1,3-ジフルオロ-2-プロピル基などは特別の注意が必要で、酸化的代謝によって猛毒のモノフルオロ酢酸が生成しえます(クエン酸回路の阻害物質として働く。半数致死量はシアン化ナトリウムと同程度)。

まとめ

化学的には「言われてみればそうですね~」な事例ばかりなのですが、普段から可能性を頭に置いておかないと、ふとした拍子に気づきにくい話とも思えました。

良い面ばかりのみならず懸念面もあるのだ、ということを頭に置いておくことで、より適切な使用が行えるようになるのはどんな技術でも同じです。こういう情報は時間を見つけて適宜仕入れておきたいところですね。

関連文献

  1. Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315. doi:10.1021/acs.jmedchem.5b00258
  2. (a) Gouverneur, V.; Szpera, R.; Moseley, D. F. J.; Smith, L. B.; Sterling, A. J. Angew. Chem. Int. Ed. 2019, doi: 10.1002/anie.201814457 (b) Yang, L.; Dong, T.; Revankar, H. M.; Zhang, C.-P. Green Chem. 2017, 19, 3951. doi:10.1039/C7GC01566F

関連書籍

[amazonjs asin=”4274506916″ locale=”JP” title=”創薬科学入門 ―薬はどのようにつくられる? (改訂2版)”][amazonjs asin=”1405167203″ locale=”JP” title=”Fluorine in Medicinal Chemistry and Chemical Biology”]

ケムステ関連記事

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【ケムステSlackに訊いてみた⑤】再現性が取れなくなった!どう…
  2. 模型でわかる【金属錯体型超分子】
  3. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化
  4. ゴキブリをバイオ燃料電池、そしてセンサーに
  5. 光触媒反応用途の青色LED光源を比較してみた【2020/8/11…
  6. ピレスロイド系殺虫剤のはなし~追加トピック~
  7. 超強塩基触媒によるスチレンのアルコール付加反応
  8. AIと融合するバイオテクノロジー|越境と共創がもたらす革新的シン…

注目情報

ピックアップ記事

  1. ノーベル受賞者、東北大が米から招請
  2. 武田、ビタミン原料事業から完全撤退
  3. 学生・ポスドクの方、ちょっとアメリカ旅行しませんか?:SciFinder Future Leaders 2018
  4. 開発者が語る試薬の使い方セミナー 2022 主催:同仁化学研究所
  5. ヘテロ環、光当てたら、減ってる環
  6. 【著者に聞いてみた!】なぜ川中一輝はNH2基を有する超原子価ヨウ素試薬を世界で初めて作れたのか!?
  7. 二フッ化酸素 (oxygen difluoride)
  8. 水中マクロラクタム化を加速する水溶性キャビタンド
  9. 吉岡里帆さんが出演する企業ブランド広告の特設サイト「DIC岡里帆の研究室」をリニューアル
  10. 大幸薬品、「クレベリン」の航空輸送で注意喚起 搭載禁止物質や危険物に該当

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP