[スポンサーリンク]

化学者のつぶやき

可視光光触媒でツルツルのベンゼン環をアミノ化する

[スポンサーリンク]

単純なアルキルアミンが利用できる芳香族C–Hアミノ化反応が開発された。基質適用範囲が広く天然物などの多官能性分子にも適用できる。

分子間芳香族C–Hアミノ化反応

医薬品、農薬などに頻出する含窒素芳香族化合物の合成において、事前の官能基化を必要としない分子間芳香族C–Hアミノ化反応は強力な手法となる。しかし、利用可能な芳香族化合物や窒素源は未だ制限が多い。
これまでに報告されている分子間芳香族C–Hアミノ化反応は、配向基を利用するものが数多く知られている[1]
一方、配向基をもたないベンゼン環のC–Hアミノ化にはナイトレンが利用できるが、大過剰の基質を必要とする[1]。近年になって、化学量論量のベンゼン類を用いる芳香族C–Hアミノ化反応が報告された(図1A)[3]。しかし、これらの反応に利用可能な窒素源はイミド[3a-3d]、ヒドロキシルアミン誘導体[3e,3f]、アゾール[3g-3i]、Selectfluor®︎[3j]などに限られていた。
この課題に対しNicewiczらは、強力な酸化力をもつ福住触媒Me2-Mes-Acr+を用いて、一級アミンが利用できる電子豊富なベンゼン環のC–Hアミノ化反応を実現した。一方で、本論文の著者であるLeonori らは以前にフェノキシアミンを用いた芳香族C–Hアミノ化反応を報告している(図1C)[5]。本反応は二当量のアレーンと特殊なアミンが必要となるが、ベンゼン環をはじめとする様々な芳香族化合物にアルキルアミンを導入することができる。
今回、同著者らはNCSと光触媒を用いることにより、単純なアルキルアミンが利用可能な芳香族C–Hアミノ化を開発した(図1D)。本反応で特筆すべきはその官能基許容性であり、ハロゲン、ホウ素及びケイ素官能基をもつ基質でも問題なくアミノ化が進行する。さらに本反応をフロー系に適用することで一部のアニリン誘導体をグラムスケールで合成出来ることも示した。

図1. (A) (B) (C) 従来の芳香族C–Hアミノ化反応 (D) 本論文の反応

 

Practical and regioselective amination of arenes using alkyl amines
Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Nat. Chem. 2019, 11, 426.
DOI: 10.1038/s41557-019-0254-5

論文著者の紹介

研究者:Daniele Leonori
研究者の経歴:2007–2010 PhD University of Sheffield (Prof. Iain Coldham)
2010–2011 Postdoctral Research Associate, RWTH-Aachen University (Prof. Magnus Rueping)
2011–2012 Postdoctral Research Associate, Max Planck institute for Colloids and interfaces (Prof. Peter H. Seeberger)
2012–2014 Research Officer, University of Bristol (Prof. Varinder K. Aggarwal FRS)
2014–2018 Lecturer of Organic Chemistry, University of Manchester
研究内容:窒素ラジカルを介したC–N結合形成反応の開発

論文の概要

本反応における反応機構を以下に示す(図2A)。単純なアミンAに対しNCSを作用させN-クロロアミンBを発生させる。続いて、ブレンステッド酸を加えて生じるN-クロロアンモニウムCが一電子還元されアミニウムラジカルEとなる。Eは芳香族化合物へ付加しFを与え、続く一電子酸化と脱プロトン化によりアニリン誘導体Hが得られる。しかし、N-クロロアンモニウムCは芳香族を求電子的に塩素化しDを生成することが知られている[5]。芳香族アミノ化を実現させるためにはCのもつ通常の反応性を回避する必要があった。これらの課題に対し筆者らは光触媒としてRu(bpy)3Cl2を、ブレンステッド酸としてHClOを用いることで、求電子的塩素化を起こすことなくC–Hアミノ化を達成した。

本反応の基質適用範囲は広く、芳香環上にハロゲン(3a,3b)、シリル基(3c)、ボリル基(3d)が存在する場合も問題なく反応が進行する(図2B)。また、一級アミンを窒素源として用いることも可能である(3e)。さらに、多官能性の天然物にも適用可能である(3f,3g)。なお、本反応は1-Clを出発物質としてもアミノ化が進行する。また、1-Clに対して2当量のHClO4を添加すると1-Clの還元電位は顕著に減少した(図2C)。さらにStern-Volmerプロットの結果からプロトン化された1-Clが光触媒の励起状態を消光することが示唆された(図2D)。
以上、NCSと光触媒を用いた直截的芳香族C–Hアミノ化が報告された。単純なアルキルアミンを導入でき、幅広い官能基の許容性をもつこの反応は、生物活性分子の合成終盤官能基化などへの利用が期待される。

図2. (A) 推定反応機構 (B) 最適条件及び基質適用範囲 (C) CV測定による還元電位の比較 (D) Stern-Volmerプロット

参考文献

  1. Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016,6, 610. DOI: 1021/acscatal.5b02417
  2. [a] Kim, H. J.; Kim, J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc.2011,133,16382. DOI: 10.1021/ja207296y [b] Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S.J. Am. Chem. Soc.2014,136, 5279. DOI: 10.1021/ja501879c[c] Kawakami, T.; Murakami, Kei.; Itami, K. J. Am. Chem. Soc.2015, 137, 2460. DOI: 10.1021/ja5130012[d] Boursalian, G. B.; Ngai, M–Y.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278. DOI: 10.1021/ja4064926[e] Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kürti, L.; Falck, J. R. Science 2016, 353, 1144. DOI: 10.1126/science.aaf8713[f] Legnani, L.; Cerai, G. P.; Morandi, B. ACS Catal. 2016, 6, 8162. DOI: 10.1021/acscatal.6b02576[g] Morofuji, T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc.2014, 136,4496. DOI:10.1021/ja501093m[h] Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science 2015, 349, 1326. DOI: 10.1126/science.aac9895[i] Pandey, G.; Singh, D.; Laha, R. Asian J. Org. Chem.2017, 6, 469. DOI: 10.1002/ajoc.201600535 [j] Boursalian, G. B.; Ham, W. S.; Mazzoti, A. R.; Ritter, T. Nat. Chem. 2016,8, 810. DOI: 10.1038/NCHEM.2529
  3. Margrey, K. A.; Levens, A.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2017, 56, 15644.DOI: 10.1002/anie.201709523
  4. Svejstrup, T. D.; Ruffoni, A.; Juliá, F.; Aubert, V. M.; Leonori, D. Angew. Chem., Int. Ed. 2017, 56, 14948. DOI: 10.1002/anie.201708693
  5. [a] Lee, S. J.; Terrazas, M. S.; Pippel, D. J.; Beak, P. J. Am. Chem. Soc. 2003,125, 7307. DOI: 10.1021/ja0300463[b] Xiong, X.; Yeung, Y–Y. Angew. Chem., Int. Ed.2016, 55,16101. DOI: 10.1002/anie.201607388
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. オキソニウムイオンからの最長の炭素酸素間結合
  2. ケミカルバイオロジーとバイオケミストリー
  3. 【10月開催】 【第二期 マツモトファインケミカル技術セミナー開…
  4. シリカゲルの小ネタを集めてみた
  5. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方と…
  6. 日本化学会ケムステイブニングミキサーへのお誘い
  7. 可逆的に解離・会合を制御可能なサッカーボール型タンパク質ナノ粒子…
  8. 米国へ講演旅行へ行ってきました:Part II

注目情報

ピックアップ記事

  1. コルベ電解反応 Kolbe Electrolysis
  2. 化学の力で迷路を解く!
  3. マニュエル・アルカラゾ Manuel Alcarazo
  4. 触媒的プロリン酸化を起点とするペプチドの誘導体化
  5. シビれる(T T)アジリジン合成
  6. 聖なる牛の尿から金を発見!(?)
  7. 第61回―「デンドリマーの化学」Donald Tomalia教授
  8. 材料開発の変革をリードするスタートアップのプロダクト開発ポジションとは?
  9. マーティン・バーク Martin D. Burke
  10. マグネシウム Magnesium-にがりの成分から軽量化合物材料まで

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年6月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP