[スポンサーリンク]

化学者のつぶやき

CRISPRで薬剤分子-タンパク相互作用を解明する

[スポンサーリンク]

Harvard大学のLiau教授らは、ゲノム編集技術CRISPRを利用して、骨髄性白血病に関わるタンパク(ヒストン脱メチル化酵素:LSD1)への薬剤分子の作用機序を解明しました。

“CRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AML”

Vinyard, M. E.; Su, C.; Siegenfeld, A. P.; Waterbury, A. L.; Freedy, A. M.; Gosavi, P. M.; Park, Y.; Kwan, E. E.; Senzer, B. D.; Doench, J. G.; Bauer, D. E.; Pinello, L.; Liau, B. B. Nat. Chem. Biol. 2019, 5, 529. (DOI: 10.1038/s41589-019-0263-0)

1. ゲノム編集技術CRISPR-Cas9

CRISPRは近年、科学界で最も注目されている技術です。従来、遺伝子を改変するには、放射線や化学物質でランダムに変異を加え、得られた個体の中から目的の変異を含む個体を選び出すという手法が一般的でした(図1a)。ところが、それではとても効率が悪く、目的の個体をなかなか得ることができません。そこで、DNAを特定の位置で切断したり、修復したりする酵素を利用して、遺伝子を思い通りに改変する技術の開発が進められました(図1b)。

図1. 遺伝子改変の手法。

1990年後半から、ジンクフィンガーヌクレアーゼ(ZFN)やテールヌクレアーゼ(TALEN)という酵素を用いた手法が開発され、ゲノム編集技術は大きく進展しました。ところが、ZFNやTALENには、酵素の作製が難しい・編集効率があまり高くないといった問題点がありました。そこで、2012年にエマニュエル・シャルパンティエ(Emmanuelle Charpentier)教授・ジェニファー・ダウドナ(Jennifer Doudna)教授らによって発表され、注目を浴びているのがCRISPR-Cas9です。[1] CRISPR-Cas9は、ZFNやTALENのようにタンパクを用いて目的のDNA配列を認識するのではなく、ガイドRNA(gRNA)と呼ばれるRNA分子によってDNA配列を認識します(図2)。RNA–DNAの相互作用(A, T/U, G, Cの塩基対形成)は、タンパク–DNAの相互作用よりも単純である上に、ZFNやTALENのように目的配列ごとにタンパクを作り直さなくても、認識用のgRNAのみを変えて切断用の酵素(Cas9)を使い回すことができるので、これまで以上に簡単にゲノム編集が行えるようになりました。

図2. 遺伝子編集技術、ZFNやTALEN(左)とCRISPR(右)の違い。

2. CRISPRを用いた創薬研究:CRISPR-Suppressor Scanning

さて、CRISPRは、遺伝子治療や農作物の品種改良、医学・生物学の研究などにおいて、特定の遺伝子を挿入したり、取り除いたりするために用いられています。でも、CRISPRの応用先はそれだけではありません。CRISPRは、低分子医薬の創薬研究においてもとても有用です。

今回紹介する論文でLiau教授らは、CRISPR-suppressor scanning(CRISPR-抑制分子スキャニング)と呼ばれる手法を用いて、がん細胞の増殖に関わるタンパクに対し低分子阻害剤が作用するメカニズムを解明しました。CRISPR scanningでは、まず図3のようにCRISPRのDNA切断機能を利用して、標的タンパクの変異体ライブラリを作ります。CRISPRによって変異が起こる仕組みは以下の通りです。

  • 様々な配列を持つガイドRNAライブラリを利用し、標的タンパクの遺伝子を持つ二本鎖DNAを切断。
  • 切断された二本鎖DNAが、細胞が元々持っているDNAの修復機構(非相同末端結合;NHEJ)によって自然に繋ぎ合わされる。
  • 修復時のエラーによって、様々な変異の入ったDNAが得られる。

図3. CRISPR を用いた標的タンパクの変異体ライブラリの作製。

次に、このようにして得られた細胞を、阻害剤(リガンド分子)の存在下で培養します。すると、ある変異体では、リガンド分子が結合するはずだった部位に変異が入り、リガンド分子が標的タンパクに作用しなくなります(薬剤耐性変異)。今回の論文では、標的タンパクはがん細胞の増殖に関わるタンパク(LSD1)で、リガンド分子はLSD1の働きを阻害する、つまりがん細胞の増殖を抑える作用を持っているため、最終的に生き残った細胞のDNA配列からリガンド分子の作用機序を解析することができます(図4)。

図4. CRISPR scanningの流れ。

3. 複数の機能を持つタンパク(LSD1)へのリガンド分子の作用機序の解析

CRISPR scanningによるタンパク-リガンド相互作用の解析は、タンパクが複数の機能を持っている場合にとても有効です。今回用いられた標的タンパクLSD1は、図5のように複数のドメインからなり、ヒストンを脱メチル化する酵素活性と、転写抑制因子GFI1/GFI1BのSNAGドメインに結合し、遺伝子発現を調節するという、2つの機能を持っています。

図5. 複数のドメインからなるLSD1の構造。脱メチル化活性(水色)とGFI1との結合(マゼンタ)の2つの機能を持つ。(PDB:2Y48)

薬を開発する際には、薬剤分子の結合がタンパクの機能にどう影響を与え、治療効果をもたらすのかを理解することが重要ですが、複雑なタンパクの場合はリガンドの結合によって複数の機能が同時に変化することがあるため、薬が効くメカニズムを知るのが困難です。ところが、CRISPR scanningを用いると、たくさんの変異体の情報が得られるため、リガンドの作用を詳しく解析することができます。図6aは、CRISPR scanningによって検出されたLSD1タンパクの変異の位置を示しています。データは以下のように読み取ることができます(図6b)。

  • タンパクの細胞増殖に関わる機能が損なわれる変異は、致死変異体となり除かれる。(フレームシフト変異も含む)
  • 変異がタンパクの細胞増殖に関する機能を完全に損なわず、リガンドの結合にも影響を与えない場合、その変異体は阻害剤非存在下でのみ増殖する。
  • 変異がリガンドの結合には影響を与えるが、タンパクの細胞増殖に関する機能には影響を与えない場合、その変異体は阻害剤の存在下・非存在下に関わらず増殖できる。(薬剤耐性変異)

図6. (a) CRISPR scanningによって検出された変異の位置。変異の検出度は、阻害剤なしで培養したサンプルのデータを元に規格化し、対数値を示している。(論文より)(b) 変異の位置とがん細胞の増殖。赤星:変異の位置、青四角:細胞増殖に重要な機能部位、緑四角:細胞増殖に不要な機能部位。結合ポケットは阻害剤の結合部位を示す。

興味深いことに、検出度の高かった変異のほとんどは、GFI1/ GFI1Bの結合部位(SNAG peptide)から少し離れ、脱メチル化活性部位(FAD補因子)の周辺に位置しています(図7;赤)。このことから、リガンド分子の作用機序は、脱メチル化活性を阻害することではなく、GFI1/ GFI1Bとの結合を阻害することであると示唆されます。実際、論文中では、CRISPR scanningによって得られた薬剤耐性LSD1が、脱メチル化活性を持たないこと・GFI1Bと相互作用できることなどが示されています。

LSD1の構造の拡大図。変異の検出度が高かった部位(赤)と低かった部位(青)。(論文より)

4. おわりに

今回の論文では、CRISPRを利用した遺伝子変異によって、標的タンパクの薬剤耐性変異体を体系的に生み出し、薬剤分子の作用機序を解析するCRISPR-Suppressor Scanningという手法が示されました。タンパクは複雑な分子で、結晶構造などの情報を元に狙い通りに薬剤耐性変異体をデザインすることは難しいため、この手法は創薬研究においてとても有用です。今後、他のタンパクにも広く応用されることが期待されます。

参考文献

  1. Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. Science 2012, 337, 816. DOI: 10.1126/science.1225829
  2. Donovan, K. F.; Hegde, M.; Sullender, M.; Vaimberg, E. W.; Johannessen, C. M.; Root, D. E.; Doench, J. G. PLoS One. 2017, 12, e0170445. DOI: 10.1371/journal.pone.0170445

関連リンク

関連書籍

[amazonjs asin=”4023316881″ locale=”JP” title=”ゲノム編集からはじまる新世界 超先端バイオ技術がヒトとビジネスを変える”] [amazonjs asin=”4785358661″ locale=”JP” title=”ゲノム編集入門: ZFN・TALEN・CRISPR-Cas9″]
Avatar photo

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. 奇妙奇天烈!植物共生菌から「8の字」型の環を持つ謎の糖が発見
  2. 分析技術ーChemical Times特集より
  3. 「無機化学」とはなにか?
  4. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン P…
  5. アルドール・スイッチ Aldol-Switch
  6. 投票!2019年ノーベル化学賞は誰の手に!?
  7. 金属内包フラーレンを使った分子レーダーの創製
  8. タンパク質機能をチロシン選択的な修飾で可逆的に制御する

注目情報

ピックアップ記事

  1. 庄野酸化 Shono Oxidation
  2. 第22回「ベンゼン環の表と裏を利用した有機合成」植村元一教授
  3. ポンコツ博士の海外奮闘録⑤ 〜博士,アメ飯を食す。バーガー編〜
  4. 日本入国プロトコル(2022年6月末現在)
  5. アルツハイマー病患者の脳内から0価の鉄と銅が発見される
  6. リサイクルが容易な新しいプラスチックを研究者が開発
  7. ボロン酸触媒によるアミド形成 Amide Formation Catalyzed by Boronic Acids
  8. リンを光誘起!σ-ホールでクロス求電子剤C–PIIIカップリング反応
  9. 森林総合研究所、広葉樹害虫ヒメボクトウの性フェロモン化学構造を解明
  10. 首席随員に野依良治氏 5月の両陛下欧州訪問

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP