[スポンサーリンク]

化学者のつぶやき

チオカルバマートを用いたCOSのケミカルバイオロジー

[スポンサーリンク]

チオカルバマート型硫化水素ドナー分子を用いた硫化カルボニル(COS)の生理学的機能の研究が行われた。COSが量依存的な細胞毒性を示すことが明らかとなった。

硫化水素と硫化カルボニル(COS)

硫化水素(H2S)はガス状シグナル伝達物質の一つであり、体内にてイオンチャネルの制御や心血管の保護などの重要な機能を担う(1)。そのため、硫化水素のもつ生理機能の解明や疾患治療への利用を目的とした研究が盛んに行われている。この研究ツールとして、気体で取り扱いが困難な硫化水素に代わり、局所投与や投与濃度のコントロールが容易な「H2Sドナー小分子」が用いられてきた。その一つに、チオカルバマート型ドナー分子がある(1)。この分子は保護部位、リンカー部位およびCOS担持部位からなり、自己分解により生じる硫化カルボニル(COS)を経由して、細胞系中でH2Sを発生させるCOSH2Sへの変換は細胞中に含まれる脱酸脱水酵素(CA)の役割である。今回の著者であるオレゴン大学のPluth准教授らは、エステラーゼによる加水分解を起点とした、自己分解及びCOS生成を経由するH2Sドナー分子(チオカルバマート型ドナー分子)を開発している(1A)(2)。この研究にて、COSがミトコンドリアの呼吸を阻害することで、細胞毒性を示すことが示唆された。COSは細胞系中では速やかに分解されるためその性質を調べるのは困難であったが、当該研究はこのH2Sドナー分子がCOSの生理学的機能を調べる上で新たな研究ツールとなりうる可能性を提示した。

 今回著者らはCOSが細胞毒性を有することを踏まえ、チオカルバマート型ドナー分子のCOS生成速度の違いが細胞毒性に与える影響を調査した(1B)。エステル部位の嵩高さ及び芳香環の電子状態をパラメータに設定し、COSの生成速度を変化させた種々の誘導体を合成した。エステルの加水分解及び自己分解が速く進行する分子は、COSの生成速度がCAによる分解速度を上回り、COSが細胞内に蓄積する。そのため、COS生成が遅い誘導体よりも強い細胞毒性を示すことが予想される。

図1. (A)エステラーゼを起点としたCOS/H2Sドナー (B)今回の内容

 

Esterase-Triggered Self-Immolative Thiocarbamates Insight into COS Cytotoxicity

Levinn, C. M.; Steiger, A. K.; Pluth, M. D. ACS Chem. Biol.2019, 14, 170.

DOI: 10.1021/acschembio.8b00981

論文著者の紹介

研究者:Mike Pluth

研究者の経歴:
-2004 B.S., University of Oregon, USA
2005-2008 Ph.D., University of California Berkeley, USA (Prof. Robert G. Bergman and Kenneth N. Raymond)
2008-2011 Posdoc, Massachusetts Institute of Technology, USA (Prof. Stephen J. Lippard)
2011-2016 Assistant Prof. at University of Oregon, USA
2016-  Associate Prof. at University of Oregon, USA
2018-  Assistant Vice President for Research. at University of Oregon, USA
研究内容:COSH2Sのケミカルバイオロジー

論文の概要

著者らはまずチオカルバマート型ドナー分子エステル部位の嵩高さが異なる誘導体を合成後、エステル部位がH2S発生速度にどのような影響を与えるかを調べた(2A(i))。エステラーゼ及びカタラーゼ存在下にてチオカルバマート分子を作用させ、H2Sプローブを用いてH2S発生量を測定した(2A(ii))。その結果、ナフチル基等の嵩高い置換基を導入した誘導体は、シクロプロピル基等の小さな置換基を導入した場合よりもH2Sの発生速度が低下した。この原因として嵩高い置換基がエステラーゼによる加水分解の反応速度の低下を引き起こし、COSひいてはH2S発生速度が減少したことが考えられる。この結果より、小さな置換基をもつ誘導体はCOS生成速度が速く、細胞中にてCOSの蓄積が増加するため、より強い毒性を示すと予想された。そこで、これらの誘導体を細胞へ投与し細胞毒性を測定したところ、実際にメチル基等の小さな置換基をもつ誘導体は嵩高い置換基をもつものよりも強い毒性を示した(2A(iii))。これよりCOSは量依存的な細胞毒性を示すと判明した。

 続いてアニリンの芳香環部位の電子状態が異なる種々の誘導体を合成し、まず上述の2種の酵素存在下でH2Sの生成速度を比較した(2B(i))。強い電子供与性のフェニル基や求引性のニトロ基を導入した場合、H2Sの生成速度が低下した(2B(ii))。これより電子供与能ないし求引能が大きい置換基を導入した場合、COSの生成速度が低下すると予測された。続いてこれらの誘導体の細胞毒性を測定したところ、電子供与能ないし求引能が強い置換基を導入した場合は毒性が低下する傾向が見られた(2B(iii))。著者らはH2S/COSの生成速度と置換基効果の関係を次のように考察している。強い電子供与性置換基を導入した場合、アニリン部位の脱離能が低くなり、自己分解速度が低下する(C)。また、強い電子求引性置換基を導入した場合、酸性度が上昇したアミドのN–Hの脱プロトンに続くイソチオシアネート生成後、遅い加水分解を受けてCOSを生成する経路が優先する(C)(3)

図2. (A)エステル部位の嵩高さの影響 (B)芳香環の電子状態の影響 (C)置換基効果とCOS生成速度の関係

 

以上、COSの蓄積が細胞毒性を示すことが示された。本研究をきっかけとしてCOSの生理学的機能についてさらなる研究が行われるのが待たれる。

参考文献

  1. Powell, C. R.; Dillon, K. M.; Matson, J. B. Pharmacol. 2018, 149, 110. DOI: 10.1016/j.bcp.2017.11.014.
  2. Steiger, A. K.; Marcatti, M.; Szabo, C.; Szczesny, B.; Pluth, M. D. ACS Chem. Biol.2017, 12, 2117. DOI: 1021/acschembio.7b00279.
  3. Zhao, Y.; Henthorn, H. A.; Pluth, M. D. J. Am. Chem. Soc.2017, 139, 16365. DOI: 10.1021/jacs.7b09527.
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 天然階段状分子の人工合成に成功
  2. 「つける」と「はがす」の新技術|分子接合と表面制御 R4
  3. 対称性に着目したモデルに基づいてナノ物質の周期律を発見
  4. 誰もが憧れる天空の化学研究室
  5. 電流励起による“選択的”三重項励起状態の生成!
  6. CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベ…
  7. 光レドックス触媒と有機分子触媒の協同作用
  8. Reaxys Ph.D Prize 2014受賞者決定!

注目情報

ピックアップ記事

  1. 相次ぐ有毒植物による食中毒と放射性物質に関連した事件
  2. 前代未聞のねつ造論文 学会発表したデータを基に第三者が論文を発表
  3. 共有結合性リガンドを有するタンパク質の網羅的探索法
  4. キラルアミンを一度に判別!高分子認識能を有するPd錯体
  5. 論文のチラ見ができる!DeepDyve新サービス開始
  6. 北原武 Takeshi Kitahara
  7. 留学せずに英語をマスターできるかやってみた(3年目)
  8. デヴィッド・ミルステイン David Milstein
  9. 若手&高分子を専門としていない人のための『速習 高分子化学 入門』【終了】
  10. 特定の場所の遺伝子を活性化できる新しい分子の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP