[スポンサーリンク]

ケムステしごと

工程フローからみた「どんな会社が?」~タイヤ編 その1

[スポンサーリンク]

Tshozoです。

今回の主役はゴムで出来ている車両用タイヤ。通勤時に道路で毎日目にするわりにはあんまり原料や製法をきちんと把握できてないなぁと感じていることから今回取り上げることにしましたのでお付き合いください(なお以下では乗用車に限定したノーマルタイヤを採り上げ、スタッドレスタイヤや他の特殊用途タイヤはまた別の機会に採り上げることにします)。

なおこの記事を書くにあたり、国立科学博物館産業技術史資料情報センター殿(リンク1, リンク2)による資料[文献1]を全体の下敷きとさせていただきました。同機関の資料は極めて素晴らしいものが多く、科学史という意味はもちろん技術資料としても一級品のものが揃っており以前アンモニア合成の歴史を振り返る際にも多用しています。ぜひ一度ご覧ください。

一般的な車両用タイヤの構成物

日米欧で主役プレーヤが異なるうえにかなり部材が多いのですが、まずは欧州のゴム原料の雄、Lanxessの資料と筆者がうまれてはじめて乗った外車に付けてあったタイヤ”Continental”の資料、そして国内タイヤの主要一角であるDunlopブランド(住友ゴム)の動画とを引用させていただき[文献2]その構成物をバラしてみましょう。以下、自動車用の(ラジアル)タイヤに絞って話を進めます。

一般的なタイヤの構造イメージ 名称は若干異なるケースあり
スチールベルトは合成繊維ベルトであるケースが多い

カーカスの中にあるファイバ(樹脂がほとんど)がタイヤのトラバース方向に配置されつつ、
中心から放射状に外に向かっているのがラジアルタイヤ[文献3]

日本国内では住友系列で扱われるダンロップブランド(こちら)による
非常に判りやすい動画 それぞれの役割も詳細に説明されてます

ベルトやビードワイヤ類を除くと全部ゴムですが、全部同じ成分で製造すればいいわけではありません。様々な状態の路面で走行距離およそ5~10万キロレベルの苛酷な使用に満足しつつ乗り心地向上、ノイズ抑制、振動抑制、スリップ防止、そして燃費向上とムチャな要求を突き付けられる、それが乗用車用タイヤであります。接地面のトレッド部、タイヤの命とも言うべきショルダーとサイドウォール、ガスを長期間にわたって封じ込めるインナーライナー、そして回転時の遠心力に耐えるカーカスというように各部が役割を持ちつつ進化してきたわけです。

なおミシュランの社長が1980年代中盤に「うち(ミシュラン)はあと200年はタイヤ中心の会社としてやっていってみせる」という発言をしていたのですが[文献5]、タイヤはそう簡単にはニーズは消えず、技術も囲い込むだけでなくむしろ新しいものを生み出していってみせる自信があるという事をよく表している言葉のような気がします。またタイヤに使われるゴムは第二次世界大戦中に各国で戦略物質と位置付けられ、ドイツでもBASFがI.G.Farbenへと変遷した後、商品名Bunaという名称で子会社のHuelsに合成させてガンガン戦線に投入していたことを考えるとその重要性は一般の方が考えるよりも相当に高いのではと思う次第です。

誰がどうやって作っているのか?

乗用車用(ラジアル)タイヤの完成品は世界のブリジストン、欧州の覇者ミシュラン&乗り心地に定評のあるコンチネンタル、米国の王者グッドイヤー、日本の東洋ゴム、横浜ゴム、住友ゴム(元グッドイヤー系だったが2014年に提携解消)、これに中国メーカ(中策ゴム)、韓国メーカ(ハンコック、クムホ)が入り混じって多数のプレーヤとして世界シェア争いをしています。市場規模は1987年あたりに比べると2016年時点で16兆円前後と約4倍に膨れ上がっており、乗用車の台数の伸びとおおよそ比例していて3強は安定的にシェアを維持してはいますが、やはりアジアメーカの伸長が著しいのとが特筆すべき点でしょう。

地域で異なるがまずは全世界で[文献4(ダンロップ=住友ゴム)] なお昔、日本国内であの「オカモト」がミシュランと組み
独自ブランドでタイヤを生産していた時期があった[文献5]

その作り方も三者三様に入り乱れていて、それこそ原料ゴムとフィラーの混ぜ方一つとってもノウハウが詰め込まれ、各社の全容を知ることはほぼ叶いません。そのため下記に示すのは極めて初歩的な工程ですが、関係者にヒアリングしたところ大筋は合っているとのことでしたので以下これをベースに話を進めましょう。

“Continental Reifengrundlagen PkW”[文献4]より筆者が編集して引用
Lanxessが使っているタイヤ展開図もこちらから引用したものらしい
上記同様、スチールコードは合成繊維コードであるケースが多数ある

そして、動画で連続して観るとこんな感じ。このミシュランの動画、非常にわかりやすくていいですね。若干工程は古いのですが、基本的なところは現在でも同じはずです。あと、ビードワイヤ付近の靴下状にひっくりかえす部分のところは上図からは省略していますのであしからず。

どうでしょう、最後にプクーッと膨れるところなんかかっこいいですよね。この最後の成形&硬化用に使う金型構造はかなり複雑で、基本的には風船のように内部構造を膨らませつつ金型カベに押し付けて硬化させるインフレーション成形っぽいことをやっていることになります。1個あたりだいたい15~20分くらいかけて硬化させているようですが、今はもしかしたらもっと早くなっているかもしれません。なお一番内側のインナーライナーが製造に足る品質になる以前、つまり随分前のタイヤには自転車用のチューブ(これ)っぽいのが入っていたそうで、空気の抜けは早いわ組み付けはめんどくさいわで非常に難儀な部品だったとか(経験者談)。

ということで、製造工程をバラすだけでえらい長さになってしまいました。本件の本旨である各部の役割とその原料、そしてそれらを合成しているメーカの紹介は次回に・・・

【参考文献】

  1.  “タイヤ技術の系統化” 国立科学博物館産業技術史資料情報センター 石川 泰弘殿 素晴らしい資料 リンク
  2. “Trends and Material Needs of the Tire Industry –ARLANXEO’s Perspective”, ARLANXEO, VKRT Seminar December 2017
  3. “Continental Reifengrundlagen PkW” , Continental AG 2013-2014, リンク
  4. “世界のタイヤ市場シェア”, ブリジストン、2017,  リンク
  5. “タイヤ・ゴム”, 日経産業シリーズ、川手恒忠(元ブリジストン常務)、日本経済新聞社 リンク
Avatar photo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 【ワイリー】日本プロセス化学会シンポジウム特典!
  2. コロナワクチン接種の体験談【化学者のつぶやき】
  3. 有機合成化学協会誌2018年11月号:オープンアクセス・英文号!…
  4. 今年は国際周期表年!
  5. 最期の病:悪液質
  6. ハーバート・ブラウン―クロスカップリングを導いた師とその偉業
  7. 誤った科学論文は悪か?
  8. 抗結核薬R207910の不斉合成

注目情報

ピックアップ記事

  1. 史 不斉エポキシ化 Shi Asymmetric Epoxidation
  2. 2015年化学10大ニュース
  3. デヴィッド・ミルステイン David Milstein
  4. 第10回慶應有機化学若手シンポジウム
  5. パーフルオロ系界面活性剤のはなし ~規制にかかった懸念物質
  6. 【書籍】英文ライティングの基本原則をおさらい:『The Element of Style』
  7. 積水化学工業、屋外の使用に特化した養生テープ販売 実証実験で耐熱・対候性を訴求
  8. ジェフリー·ロング Jeffrey R. Long
  9. 青いセレンディピティー
  10. Marcusの逆転領域で一石二鳥

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー