[スポンサーリンク]

化学者のつぶやき

150度以上の高温で使える半導体プラスチック

[スポンサーリンク]

Purdue大学のMei教授らは、150ºC以上の高温でも安定的に電気を流せる半導体ポリマー材料を開発することに成功しました。

“Semiconducting polymer blends that exhibit stable charge transport at high temperatures”

Gumyusenge, A.; Tran, D. T.; Luo, X.; Pitch, G. M.; Zhao, Y.; Jenkins, K. A.; Dunn, T. J.; Ayzner, A. L.; Savoie, B. M.; Mei J. Science 2018, 362, 1131. (DOI: 10.1126/science.aau0759)

1. 半導体は熱に弱い。

携帯電話やパソコンなど、電子機器は一般的に熱に弱いとされています。その理由の一つは、高温では電子機器中の半導体において、電気がうまく流れなくなってしまうからです。

半導体は、電子機器に欠かせないトランジスタという部品に用いられています。「トランジスタって、聞いたことはあるけどよく知らない…」という人もいるかも知れませんが、簡単に言えば、トランジスタとは電流や電圧をコントロールできる部品のことです。トランジスタを使って電圧を調節し、電圧の高い状態を0、低い状態を1とみなすことで、コンピュータの基礎となる論理演算ができるようになります。(より詳しく知りたい方はこちら

さて、トランジスタに最もよく使われている材料は無機物質のシリコンですが、近年では有機半導体分子を用いた有機電界効果トランジスタ(OFET)の応用も進められています。OFETは図1aのような構造をしていて、ソース・ドレイン・ゲートという3つの電極と、有機半導体の層、絶縁性の層からなります。まず、ドレイン・ソース間に電圧をかけると、有機半導体のキャリアの量に応じて、電流が流れます。このとき、ゲート電極にも電圧をかけると、有機半導体の層においてキャリアが移動し、絶縁膜の付近でのキャリアの濃度が変化します。こうすることで、ドレイン・ソース間に流れる電流の量を調節することができます。

図1.  (a) 一般的な有機電界効果トランジスタ(OFET)の構造。(b) ゲート電圧をかけると、p型有機半導体内のキャリア(正孔)が絶縁膜付近へと移動し、キャリア濃度の高い層ができる。

ところが、このようなトランジスタは150 ºC以上の高温になるとうまく働かなくなってしまいます。それは、常温できちんと配列していた有機半導体分子が、高温になると運動性を増し、配列やパッキングが崩れてしまうからです。

2. 熱に強いポリマーとのブレンドで、耐熱性を上げる。

そこでMei教授らは、半導体ポリマーに対して耐熱性のポリマーを混ぜることで、高温での分子のコンフォメーション変化を抑え、半導体ポリマーの性能を安定に保とうと考えました。彼らが用いたのは、ジケトピロロピロール-チオフェン(DPP-T)という半導体ポリマーと、ポリビニルカルバゾール(PVK)というガラス転移点(Tgの高いポリマーです(図2)。ガラス転移点というのは、ポリマーをその温度以上に加熱すると、柔らかく変形しやすくなる温度のことです。PVKはガラス転移点が220 ºCと高いので、その温度以下では硬く、形状をしっかり保つことができます。

図2. 半導体ポリマー(DPP-T)と、ガラス転移点の高いポリマー(PVK)。

彼らは、半導体ポリマーのDPP-Tに対してPVKを様々な比で混ぜて図3aのようなトランジスタを作り、各温度でのキャリアの移動度を測定しました。図3bからわかるように、PVKを50%〜60%混ぜた場合には、25ºCから220ºCの範囲で一定して高いキャリア移動度(〜2.5 cm2/Vs)が得られています。

図3. (a) DPP-TとPVKを用いたトランジスタ。(b) 各温度におけるトランジスタのキャリア移動度(µh)。グラフは論文より。

3. PVKとのブレンドにより、分子間相互作用が強化。

では、PVKを混ぜることで、分子レベルではどのようなことが起こっているのでしょうか。彼らは、UV-Vis分光法や原子間力顕微鏡(AFM)、微小角入射X線回折法(GIXD)などを用いて、ポリマー材料を詳細に調べました。図4aは、GIXDにより得られた、ポリマー分子間のπ–π相互作用距離を示しています。DPP-Tのみの場合(P1)と比べて、PVKを混ぜた場合(PVK Blend)には、π–π相互作用距離が小さくなっていることが分かります。π–π相互作用距離が小さいということは、ポリマー分子同士が密接にパッキングしており、分子の動ける範囲が小さい(自由度が小さい)ということです。つまり、PVKを混ぜることで分子鎖内での再配列が制限され、半導体ポリマーが温度による影響を受けにくくなったと言えます。実際、彼らが行った分子動力学シミュレーションでは、π–π相互作用距離が5Åのときに比べ、3Åのときには分子内の回転自由度が下がる(CCCN二面角の分布が狭まる)という結果が得られています(図4b, c)。

図4. (a) 各温度におけるポリマー分子間のπ–π相互作用距離。P1: DPP-Tのみ。PVK Blend: DPP-TにPVKを60%の比率で混合。(b) 分子動力学計算による、各温度でのCCCN二面角の確率分布。 (c) 分子動力学計算によるDPP-Tポリマー鎖のパッキングモデル。π–π相互作用距離:3Å(左)、5Å(右)。論文より。

4. 他のポリマーにも応用可能。

それでは、他の半導体ポリマーや高ガラス転移点のポリマーを用いた場合でも、同じように耐熱性を向上させることはできるのでしょうか。Mei教授らは、様々な半導体ポリマーや高ガラス転移点ポリマーを用いて同様の実験を行いました。図5aは、彼らが用いた高ガラス転移点のポリマーを示しています。これらを半導体ポリマーDPP-T(P1)と相分離しない割合で混ぜたところ、PEI・PAC・MEを混ぜた場合においても220ºCという高温下で安定したキャリア移動度が得られることが分かりました。PCを混ぜた場合には、200 ºC以上でキャリア移動度の低下が見られますが、これはPCのガラス転移点が182 ºCであることと一致しています。

図5. (a) 高ガラス転移点ポリマーの構造。(b) 各温度におけるトランジスタのキャリア移動度(µh)。グラフは論文より。

5. おわりに

Mei教授らは、半導体ポリマーに耐熱性のポリマーを混ぜるというシンプルな方法で、150ºC以上の高温に耐える半導体を得ることに成功しました。耐熱性の半導体は、飛行機のエンジン付近で使用するセンサーや、宇宙探査機など、様々な場面で有用なので、今後応用が進められることが期待されます。

関連リンク

参考文献

  1. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Chem. Rev. 2007, 107, 926. DOI: 10.1021/cr050140x

関連書籍

[amazonjs asin=”4769341601″ locale=”JP” title=”はじめての導電性高分子 (ビギナーズブックス)”] [amazonjs asin=”4798053538″ locale=”JP” title=”図解入門 よくわかる半導体プロセスの基本と仕組み第3版”]
Avatar photo

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. 飲むノミ・マダニ除虫薬のはなし
  2. 中小企業・創薬ベンチャー必見!最新研究機器シェアリングシステム
  3. 研究室での英語【Part 3】
  4. ムギネ酸は土から根に鉄分を運ぶ渡し舟
  5. スイスの博士課程ってどうなの?1〜ヨーロッパの博士課程を知る〜
  6. 構造式を美しく書くために【準備編】
  7. かさ高い非天然α-アミノ酸の新規合成方法の開発とペプチドへの導入…
  8. 第47回ケムステVシンポ「マイクロフローケミストリー」を開催しま…

注目情報

ピックアップ記事

  1. 電流励起による“選択的”三重項励起状態の生成!
  2. エーザイ、抗体医薬の米社を390億円で買収完了
  3. プロテオミクス現場の小話(1)前処理環境のご紹介
  4. 配位子保護金属クラスターを用いた近赤外―可視光変換
  5. ネオジム磁石の調達、製造技術とビジネス戦略【終了】
  6. ハーバード大Whitesides教授がWelch Awardを受賞
  7. モリブドプテリン (molybdopterin)
  8. 渡邉 峻一郎 Shun Watanabe
  9. DABを用いた一級アミノ基の選択的保護および脱保護反応
  10. エノラートのα-アルキル化反応 α-Alkylation of Enolate

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP