[スポンサーリンク]

化学者のつぶやき

Mgが実現する:芳香族アミンを使った鈴木―宮浦カップリング

[スポンサーリンク]

ニッケル触媒による芳香族アミンとボロン酸エステルとの鈴木―宮浦型カップリングが開発された。2価のニッケル種の還元と触媒サイクルの促進という2つの役割をマグネシウムが担っている。

アリールC-N結合切断を伴うカップリング

 芳香族アミン(N,Nジアルキルアリールアミン)は医薬品および天然に広く存在する骨格であり、その構築法はUllmann縮合Buchwald–Hartwigクロスカップリングを始めとして、これまで盛んに研究されている。一方で、熱力学的および速度論的安定性をもつ不活性なアリールC–N結合の活性化は一般的に困難であり、遷移金属触媒によるカップリングの報告例は少ない。先駆的な例として、1988年にWenkertらがニッケル触媒条件下、アリールトリメチルアンモニウム塩とGrignard試薬とのカップリング反応を報告している(1A)[1]。これを皮切りに、有機金属反応剤を用いた遷移金属触媒によるC–N結合活性化が注目されるようになった。2003年にはMacMillanらが、芳香族ボロン酸とアリールアンモニウム塩を用いた鈴木―宮浦型カップリングを開発した(1B)[2]。しかしアンモニウム塩を求電子剤として用いるこれらの手法は、ジメチルアリールアミンを活性なアンモニウム塩へ変換する工程が必要となる。2007年に垣内らはルテニウム触媒存在下、o位に配向基をもつアニリン誘導体と芳香族ボロン酸エステルとの鈴木―宮浦型カップリングの開発に成功した(1C)[3]。事前の求電子剤活性化を必要とせず、様々な芳香族アミンを用いることができるが、配向基が残存してしまうという課題が残る。

 今回、Shi教授らはニッケル触媒存在下、マグネシウムを添加することで、N,Nジメチルアリールアミンを求電子剤とした直接的な鈴木―宮浦型カップリングに初めて成功したので紹介する(1D)

図1.アリールC-N結合の還元的カップリング

 

Ni-Catalyzed Cross-Coupling of Dimethyl Aryl Amines with Arylboronic Esters under Reductive Conditions

Cao, Z. C.; Xie, S. J.; Fang, H.; Shi, Z. J. J. Am. Chem. Soc.2018, 140, 13575-13579.

DOI: 10.1021/jacs.8b08779

論文著者の紹介

研究者:Zhang-Jie Shi

研究者の経歴:
1992-1996 BSc, Department of Chemistry, East China Normal University
1996-2001 PhD, Shanghai Institute of Organic Chemistry, CAS (Prof. Shengming Ma)
2001-2002 Postdoc Fellow, Harvard University (Prof. Gregory L Verdine)
2002-2004 Research Associate, The University of Chicago (Prof Chuan He)
2004-2008 Associate Professor, College of Chemistry and Molecular Engineering, Peking University
2008-2017 Professor, College of Chemistry and Molecular Engineering, Peking University
2017- Professor, Department of Chemistry, Fudan University

研究内容:遷移金属触媒を用いた反応開発

論文の概要

 本反応はNi/IMesMe触媒存在下、添加剤としてMgを用い、N,Nジメチルアリールアミン1とアリールボロン酸ネオペンチルグリコール2とのカップリング反応によりビアリール体3を高収率で与える。1に種々のアルキル置換基やエーテル、ケタールなどの官能基、さらにはアルキルボロン酸エステルが内在していても反応は進行する(2A)。また2はアルキル基だけでなくアリール基、シリル基の共存も可能である。

 EPR解析およびDFT計算の結果から、系中で(IMesMe)2Ni(I)Brが生成していることが確認され、Ni(I)/Ni(III)の触媒サイクルが示唆された。そこで著者らはマグネシウムの効果を調査するために対照実験を行った(2B)。もし本反応においてマグネシウムが還元剤としての役割のみをもつならば、(IMesMe)2Ni(I)Brを触媒として直接添加しても同様の結果が得られるはずである。しかし予想に反し、Mg非存在下では3の収率が大幅に低下したが、Mgが添加されている場合、最適条件と同等の収率で3を与えた。つまりMgは還元剤としての働きに加え、本反応を促進する役割も担っていることが示唆される。本反応機構は次のように提唱されている(2C)。まず、Mgにより、Ni(II)Ni(I)へ還元され活性種が生成する。続いて、配位子交換によりが得られた後、酸化的付加によって3価のニッケル種が生成する。2とのトランスメタル化を経て、が還元的脱離を起こすことで3を与え、また活性種が再生し触媒サイクルが完結する。

図2. (A)基質適用範囲、(B)対照実験、(C)推定反応機構

 

以上、N,Nジメチルアリールアミンを求電子剤とした直接的鈴木―宮浦型カップリングが開発された。詳細な機構は不明であるが、芳香族アミンをそのままカップリング剤として用いることができるようになったことは興味深い。

参考文献

  1. Wenkert, A.-L. Han and C.-J. Jenny, J. Chem. Soc., Chem. Commun., 1988, 0, 975. DOI: 10.1039/C39880000975
  2. Blakey, S. B.; MacMillan, D. W. J. Am. Chem. Soc.2003, 125, 6046. DOI: 10.1021/ja034908b
  3. [a]Ueno, S.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc.2007, 129, 6098. DOI: 10.1021/ja0713431[b] Koreeda, T.; Kochi, T.; Kakiuchi, F. J. Am. Chem. Soc.2009,131, 7238. DOI: 10.1021/ja902829p
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ご注文は海外大学院ですか?〜出願編〜
  2. 光有機触媒で開環メタセシス重合
  3. ゼロから学ぶ機械学習【化学徒の機械学習】
  4. クマリンを用いたプロペラ状π共役系発光色素の開発
  5. ケムステイブニングミキサー2017へ参加しよう!
  6. 印象に残った天然物合成1
  7. クラリベイト・アナリティクスが「引用栄誉賞2020」を発表!
  8. IKCOC-15 ー今年の秋は京都で国際会議に参加しよう

注目情報

ピックアップ記事

  1. ウェルチ化学賞・受賞者一覧
  2. マテリアルズ・インフォマティクス活用検討・テーマ発掘の進め方 -社内促進でつまずやすいポイントや解決策を解説-
  3. 有機化合物合成中に発火、理化学研が半焼--仙台 /宮城
  4. コルベ・シュミット反応 Kolbe-Schmitt Reaction
  5. シクロファン+ペリレンビスイミドで芳香環を認識
  6. ポロノフスキー開裂 Polonovski Fragmentation
  7. フロイド・ロムスバーグ Floyd E. Romesberg
  8. ポンコツ博士の海外奮闘録XXIII ~博士の危険地帯サバイバル 薬物編~
  9. 伊藤嘉彦京都大名誉教授死去
  10. ニトロンの1,3-双極子付加環化 1,3-Dipolar Cycloaddition of Nitrone

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー