[スポンサーリンク]

化学者のつぶやき

酵母菌に小さなソーラーパネル

[スポンサーリンク]

Harvard大学のNeel S. Joshi教授らは、光合成を行わない微生物に光増感剤を担持することで、細胞内の代謝反応を光で駆動することに成功しました(トップ画像出展・改変:Wyss Institute at Harvard University。)。

“Light-driven fine chemical production in yeast biohybrids”

Guo, J.; Suástegui, M.; Sakimoto, K. K.; Moody, V. M.; Xiao, G.; Nocera, D. G.; Joshi, N. S. Science 2018, 362, 813. (DOI: 10.1126/science.aat9777)

(本記事のタイトルは、Science Newsの記事をもとにしています。)

1. 生物は外からエネルギーを取り込み、有機物を合成する

図1.  (a) 光からエネルギーを得る植物。(b) 有機物からエネルギーを得る動物。

植物は、光のエネルギーを受け取って電子を生み、その電子を利用して有機物を合成しています(図1a)。一方で、ヒトや動物、微生物の多くには光を取り込む機能はありません。それなので、外部から取り込んだ有機物から電子を受け取り、その電子を利用して別の有機物を作っています(図1b)。

ところが今回、Harvard大学のNeel S. Joshi教授らは、インジウムリン(InP)のナノ粒子を用いて光エネルギーを捕集し、そのエネルギーを細胞に受け渡すことで、光合成を行わない酵母菌の代謝反応を、光で駆動できることを示しました (図2)。

図2.  InPナノ粒子による光の捕捉と酵母細胞内のNADPH合成反応。

2. シキミ酸合成には、NADPHが必要

Joshi教授らが用いた微生物は、パンやビールなどの発酵過程で用いられる酵母(Saccharomyces cerevisiae)です。近年では、酵母の遺伝子を改変して、薬などに有用な化合物を作らせるバイオトランスフォーメーションの研究も盛んになされています。例えば、シキミ酸という化合物(図3)は、インフルエンザ治療薬タミフルなどの原料となるため、酵母のシキミ酸合成経路を改良して大量合成させるといった取り組みがなされています。しかしながら、どんなに目的化合物の収量を上げようとしても、代謝に使えるエネルギー(電子)には限りがあるため、細胞を害することなく目的化合物を大量に作らせることは困難です。細胞内で、電子供与体のNADPHという分子が不足してしまい、反応が行えなくなります。

図3. シキミ酸の生合成反応の最終段階。NADPHからDHSに電子が与えられる。

3. 光増感剤を利用した光エネルギーの捕集

そこでJoshi教授らは、光増感剤(photosensitizerを利用して、細胞内に外部から電子を供給する方法を考えました。光増感剤というのは、光を吸収してエネルギーを得、そのエネルギーを他の物質へと与える物質のことです。彼らは、光増感剤のインジウムリン(InP)ナノ粒子を酵母の細胞表面に担持することで、InPナノ粒子が吸収したエネルギーが細胞内へと伝えられ、NADPHを再生産できるようにしました(図4)。

図4. 光増感剤の半導体InPナノ粒子。細胞上に担持するため、ポリフェノールで被覆されている。

4. 光エネルギーにより、シキミ酸の生産量が増大

彼らは、InPナノ粒子を担持した酵母細胞に光を当て、シキミ酸の生産量を調べました。図5aは、酵母細胞に光を当てた場合(light)と光を当てなかった場合(dark)における、シキミ酸とDHSの生産量を示しています。光照射がありかつInP粒子が担持されている細胞では、光照射やInPナノ粒子がない細胞と比べ、シキミ酸の生産量が大幅に増えていることが分かります。また、シキミ酸/DHS比を元に、細胞内のNADPH/NADP+比を求めることもできます。図5bに見られるように、光照射した場合には、NADPH/NADP+比が87%にもなっており、これは光を当てなかった場合の27です。このような実験から、外部から与えた光エネルギーがInP粒子を介して細胞内へと伝えられ、細胞内のNADPHの量を増大させることが示されました。

図5. (a) 光照射/非照射下におけるシキミ酸とDHSの生産量。(b) 光照射/非照射下におけるNADPH/NADP+比。用いられた酵母菌(Δzwf1)は、ペントースリン酸経路(pentose phosphate pathway)の遺伝子を欠損しているため、酵母自身によるNADPHの生産が抑えられている。(図は論文より)

5. 細胞の炭素利用の変化

それでは、InPナノ粒子の光捕捉は、細胞全体の炭素利用にどう影響を与えているのでしょうか。彼らは、細胞で作られる他の有機物の生産量を、シキミ酸の生産量と同時に計測しました。図6aは、エタノールとグリセロールの生産量を、光照射時と非照射の比で示しています。光を照射すると、シキミ酸の生産量は増える(青色)のに対し、エタノールやグリセロールの生産量は減少(赤色)していることが分かります。エタノールやグリセロールの生合成過程では、NADP+からNADPHが生産されますが、光照射下ではInPナノ粒子からのエネルギーがNADPHをNADP+に変えるため、エタノールやグリセロールの生産が抑えられているのだと考えられます(図6b)。

図6. (a) エタノールやグリセロールの生産量変化。光照射時と光非照射時の比を示す。(論文より) (b) 光照射/非照射下における炭素の流れ。

6. おわりに

本研究は、光合成ができない酵母菌に対してでも、外から光エネルギーを供給できる画期的な技術です。InPナノ粒子で生じた励起電子が、どうやって細胞壁を通り抜け、細胞質内のNADPHに受け渡されるのかについては、まだ未解明とのことですが、酵母以外の生物でも同様に電子の受け取りができるのか、NADPH以外の電子受容体の量には影響があるのかどうかなど、今後さらに研究が進められることが期待されます。

参考文献

  1. Sakimoto, K. K.; Wong, A. B.; Yang, P. Science 2016, 351, 74. DOI: 10.1126/science.aad3317
  2. Suástegui. M.; Yu, N. C.; Chowdhury, A.; Sun, W.; Cao, M.; House, E.; Maranas, C. D.; Shao, Z. Metab. Eng. 2017, 42, 134. DOI: 10.1016/j.ymben.2017.06.008.

関連リンク

関連書籍

[amazonjs asin=”4320055403″ locale=”JP” title=”電子と生命―新しいバイオエナジェティックスの展開 (シリーズ・ニューバイオフィジックスII 1)”] [amazonjs asin=”4758120838″ locale=”JP” title=”基礎から学ぶ遺伝子工学 第2版”]
Avatar photo

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. これからの研究開発状況下を生き抜くための3つの資質
  2. カーボンナノリング合成に成功!
  3. 分子で作る惑星、その名もナノサターン!
  4. トンネル効果が支配する有機化学反応
  5. 人工DNAから医薬をつくる!
  6. 有機合成化学協会誌2021年12月号:人工核酸・Post-com…
  7. 製造業の研究開発、生産現場におけるDX×ノーコード
  8. もっとも単純な触媒「プロリン」

注目情報

ピックアップ記事

  1. グルコース (glucose)
  2. リピトールの特許が切れました
  3. ヘム獲得系のハイジャックによる緑膿菌の選択的殺菌法
  4. サイエンスイングリッシュキャンプin東京工科大学
  5. 宮浦・石山ホウ素化反応 Miyaura-Ishiyama Borylation
  6. キラル超原子価ヨウ素試薬を用いる不斉酸化
  7. 徒然なるままにセンター試験を解いてみた(2018年版)
  8. JSRとはどんな会社?-1
  9. 【日本精化】新卒採用情報(2024卒)
  10. 有機・高分子合成における脱”レアメタル”触媒の開発動向

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー