過酸化水素分子内包フラーレン誘導体を、大気圧・室温条件下で合成する方法が開発された。
分子内包フラーレン
フラーレンは構造的美しさもさることながら、その内部空間に単原子や気体分子などを取り込むことができるため、分子カゴとしての機能が注目されている(1)。特に、フラーレンの表面構造を有機合成により開環させることで、自在な分子取り込みが近年可能になりつつある(図1)。1995年、Wudlらは初めて開環フラーレン1の合成に成功した(2)。しかし開環部が小さく、ヘリウム原子すらも内包できないものであった。2001年にRubinらは大きい開環部をもつフラーレン2を合成し、初めてフラーレン誘導体にヘリウム原子および水素分子を挿入することに成功した(3)。また、2005年に小松らは、フラーレン3が水素を内包できることを見出した(4)。また、3は水素を内部に保ったまま閉環させることで、水素内包フラーレンH2@C60へ導くことが可能である。これらの先駆的な報告を皮切りに、今回の著者であるGanらを含めいくつかのグループが独自の開環部をもつフラーレン誘導体4–7を合成し、種々の気体分子やH2Oを内包できることを報告している(5–9)(ケムステ関連記事も参照)。しかし、未だ過酸化水素の内包はできていない。これは、過酸化水素が不安定であること、そして、その分解物として生じる活性酸素種が望まぬ副反応を併発してしまうためである。これが原因で、フラーレンに限らず過酸化水素を内包可能な分子容器は未だ報告されていなかった。
今回、北京大学のGan教授らは、過酸化水素分子を大気圧・室温という温和な条件で挿入可能な新規開環フラーレン誘導体を合成したので紹介する。
“Oxygen-Delivery Materials: Synthesis of an Open-Cage Fullerene Derivative Suitable for Encapsulation of H2O2and O2”
Li, Y.; Lou, N.; Xu, D.; Pan, C.; Lu, X.; Gan, L. B. Angew. Chem., Int. Ed.2018, 57, 14144.
論文著者の紹介
研究者:Gan Liangbing
研究者の経歴:
1983 B.Sc., Wuhan University
1989 Ph.D., University of Alberta, Canada
1989–1991 Postdoc, University of Sherbrooke, Canada
1991–1992 Postdoc, Peking University
1993–1997 Assistant Prof., Peking University
1998– Professor., Peking University
2003.9–2004.2 Croucher Visiting Prof., City University of Hong Kong
研究内容:フラーレンの化学
論文の概要
フラーレン誘導体9を出発物質とし、還元的条件によるフラーレン骨格の表面構造の化学修飾、続く酸化条件下開口部の環拡大を繰り返して過酸化水素内包型フラーレン8を合成した(図2A)。すなわち、ホスフィン酸ナトリウム一水和物/ヨウ化カリウム/ヨウ化銅を用いる還元条件aにより9の過酸部位を還元し、続いて、光増感剤C60と酸素存在下、光照射する酸化条件bにより、中間体10のC=C結合の酸化開裂を起こし11を得た。その後再び還元条件aを用いて11を還元的芳香族化させて12とした。最後に酸化条件bにより、C=C結合をもう一つ酸化開裂させることで、8と水分子を内包したH2O@8を合成した。
合成した8は過酸化水素を加えることで、過酸化水素分子を内包したH2O2@8となる。特筆すべきことに室温・大気圧下で過酸化水素の内包が進行する。8の開環部が過酸化水素分子の挿入に適した楕円型であること、さらに開環部のラクトン、ラクタムとの水素結合により過酸化水素分子が開環部に近付きやすいことが、今回の成功の鍵と考えられている。しかし、この溶液を室温にて数時間放置すると、一部のH2O2@8がH2O@8に変化することが確認されており、安定性の面では未だ課題が残っている(図2B)。
以上、新規開環フラーレン誘導体を合成し、大気圧・室温という温和な条件で過酸化水素分子を挿入することに成功した。安定性に改善の余地は残すものの、反応性の高い分子の内包に成功した好例と言えるだろう。
ケムステ関連記事
参考文献
- (a)Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun .2008, 0, 6083. DOI:10.1039/b811738a (b)Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Chem. Soc. Rev.2010, 39, 817. DOI:10.1039/B913766A(c)Gan,L. B.; Yang, D. Z.; Zhang, Q. Y.; Huang, H. Adv. Mater.2010, 22, 1498. DOI:10.1002/adma.200903705
- Hummelen, J. C.; Prato, M.; Wudl, F. J. Am. Chem. Soc.1995, 117, 7003. DOI:10.1021/ja00131a024
- Rubin, Y.; Jarrosson, T.; Wang, G. W.; Bartberger, M. D.; Houk, K. N.; Schick, G.; Saunders, M.; Cross, R. J. Angew. Chem., Int. Ed.2001, 40, 1543. DOI:10.1002/1521-3773(20010417)40:8<1543::AID-ANIE1543>3.0.CO;2-6
- Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. DOI:1126/science.1106185
- Iwamatsu, S.; Stanisky, C. M.; Cross, R. J.; Saunders, M.; Mizorogi, N.; Nagase, S.; Murata, S. Angew. Chem. Int. Ed.2006, 45, 5337. DOI:10.1002/anie.200601241
- Kurotobi, K.; Murata, Y. Science 2011, 333, 613. DOI:1126/science.1206376
- Yu, Y.;Shi, L.; Yang, D.; Gan, L. B. Sci. 2013, 4, 814. DOI:10.1039/c2sc21760k
- Krachmalnicoff, A.; Bounds, R.; Mamone, S.; Alom, S.; Concistrè, M.; Meier, B.; Kouřil, K.; Light, M. E.; Johnson, M. R.; Rols, S.; Horsewill, A. J.; Shugai, A.; Nagel, U.; Rõõm, T.; Carravetta, M.; Levitt, M. H.; Whitby, R. J. Chem.2016, 8, 953. DOI: 10.1038/nchem.2563
- Futagoishi, T.; Aharen, T.; Kato, T.; Kato, A.; Ihara, T.; Tada, T.; Murata, M.; Wakamiya, A.; Kageyama, H.; Kanemitsu, Y.; Murata, Y. Angew. Chem. Int. Ed.2017, 56, 4261. DOI:10.1002/anie.201701212