[スポンサーリンク]

スポットライトリサーチ

親水性ひも状分子を疎水性空間に取り込むナノカプセル

[スポンサーリンク]

第172回目のスポットライトリサーチは、山科雅裕 (やましな まさひろ)博士にお願いしました。

山科さんは東京工業大学 穐田・吉沢研究室に所属し、学生時代より超分子錯体化学研究に従事されています。

超分子錯体ナノカプセルは、その内部空間において特殊な化学挙動が観測されることが種々報告されています。今回取りあげる成果も、その疎水性空間内に親水性分子が取り込まれるという、驚くべき現象の一つです。Nature Communications原著論文およびプレスリリースとして公開され、またEditors’ Highlights(Inorganic & Physical Chemistry分野)にも選出されております。

“Cramming versus Threading of Long Amphiphilic Oligomers into a Polyaromatic Capsule”
Yamashina, M.; Kusaba, S.; Akita, M.; Kikuchi, T.; Yoshizawa, M.* Nat. Commun. 2018, 9, 4227. doi:10.1038/s41467-018-06458-w

プロジェクトを現場で指揮されております吉沢道人 准教授から、山科さんについて以下の様な人物評を頂いています。現在はケンブリッジ大学のJonathan R. Nitschke研・JSPS海外特別研究員としてさらなる研鑽を積まれているようで、今後いっそうの発展が期待される人物です。それでは今回も現場からのコメントをお楽しみ下さい!

私たちは、2011年にグループ初の分子カプセルを報告しました[1]。山科雅裕君は2013年に博士課程学生として私のグループに加わり、このカプセルの機能開拓に着手しました。2014年にラジカル開始剤の安定化[2]、2015年にペア内包によるBODIPYの蛍光色制御[3]、2017年に水中でのスクロースの識別[4]など興味深い機能を見出しました。3年間の成果のみで学位取得を目指したため、山科君は当時、高速で大量の実験を行い、その過程で私の予想を超える分子カプセルの機能を見つけました。今回のプレスリリース成果も、山科君が学生時に手探りで発見したユニークな現象です。彼の研究センスを高く評価したいと思います。ケンブリッジでの研究を通じて、さらにパワーアップして帰国することを楽しみにしています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

ナノカプセルの空間機能に関する研究をしています。今回、ひも状分子がナノカプセルに特異な2つの様式で結合することを発見しました(図1)。

図1.ひも状分子とナノカプセルによる内包および貫通型ナノ構造体の形成

酵素や合成ホスト分子は、ナノサイズの内部空間を利用して基質分子を内包しますが、通常、空間より大きな分子を内包することはできません。特に、汎用的なひも状のオリゴエチレンオキシドは、分子間相互作用が弱いことから、基質分子としての活用例はほとんどありませんでした。このような背景に対して、ナノカプセル(2011年に吉沢グループが開発[1])とひも状分子を水中で混ぜると、短いひもはカプセル空間に渦を巻いた内包型で、長いひもはカプセル骨格を突き破った貫通型で結合することが判明しました(図2)。本成果は、2016年のノーベル化学賞で話題となった分子マシンや、機能性ポリマー材料への応用展開が期待されます。

図2.(a)内包型のX線結晶構造および(b)貫通型の最適化構造(外面親水基とカウンターアニオンは省略)

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究は、ナノカプセルの水溶性向上を目的に、ナノカプセルと様々な親水性分子を混ぜたことがきっかけで始まりました。最終的に水溶性は向上しませんでしたが、その一方で取り込まれないと思っていた親水性のひも状分子が、100%の収率でナノカプセルに内包されることが分かり大変驚きました。次に、様々な長さのひも状分子に対して『一体どの長さまで内包されるのか』という疑問が湧いてきました。ナノカプセルの空間体積に制限があるため、どこかで取り込まれない分子が出てくるだろうと予想していました。しかし、試した全てのひも状分子が結合し、また、ある長さから結合形態が切り替わることが分かり、夜のNMR室で独り驚いていたことを覚えています(こちらも参照)。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

なぜこんな構造が生成するか、結合過程の熱力学的考察が一番の難問でした。残念ながら私は留学のため時間切れとなり、後輩の草葉竣介君(現 化学系メーカー勤務)に託して研究室を離れました。ITC測定は熱力学的考察を行う上で重要な分析法ですが、研究室に十分な測定ノウハウがなかったため、草葉君には自身のプロジェクトと並行して日夜多くの条件検討を重ねてもらいました。最終的に入社式前日まで(!)粘り強く実験してくれたおかげで、結合過程を矛盾なく説明できる十分なデータが得られました。さらにITC測定から、予想していなかったダブル貫通体の形成が判明したのです(図3)。

図3.ナノカプセルとひも状分子(22量体)によるダブル貫通体の形成

Q4. 将来は化学とどう関わっていきたいですか?

個人を表現するという点では、研究活動は『芸術活動』と捉えることができます。絵画や彫刻とは異なり、有機合成技術はナノサイズの造形美と機能性を自由に追究できる唯一の手段です。化学者 兼 芸術家(自称)として、極小のモノづくりを通じた新たな科学的価値を創出できたらと思います。文化的価値が高いもの、例えばショパンの音楽やガウディの建築物が現代まで残り続けるように、100年後も引用されるような作品(研究成果)を生み出すことが夢ですね。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究室に所属すると、毎日『巡り合う実験結果』に集中しがちですが(科学者たるもの、そうあるべきですが…)、個人的には『巡り会う人』も同等に大事にするべきだと思っています。私自身、自分で何かを成し遂げたというよりは、出会った人達に刺激を受け、支えられたおかげで研究を続けることができました。研究活動は一人では出来ません。研究室での良き師・先輩・友人、研究室外での交友関係など、どんな小さなご縁でも一つひとつを大切にしたいですね。

最後に、本研究を進めるにあたり大変お世話になりました、吉沢道人先生と穐田宗隆先生、草葉竣介君、株式会社リガクの菊池貴博士、そして穐田・吉沢研究室のメンバーにこの場を借りて心より感謝申し上げます。

参考文献

  1. N. Kishi, Z. Li, K. Yoza, M. Akita, M. Yoshizawa, J. Am. Chem. Soc. 2011, 133, 11438-11441.
  2. M. Yamashina, Y. Sei, M. Akita, M. Yoshizawa, Nature Commun. 2014, 5, 4662.
  3. M. Yamashina, M. Sartin, Y. Sei, M. Akita, S. Takeuchi, T. Tahara, M. Yoshizawa, J. Am. Chem. Soc. 2015, 137, 9266-9269.
  4. M. Yamashina, M. Akita, T. Hasegawa, S. Hayashi, M. Yoshizawa, Science Adv. 2017, 3, e1701126.

研究者の略歴

山科 雅裕(やましな まさひろ)
日本学術振興会 海外特別研究員
所属:University of Cambridge(Jonathan R. Nitschke 教授

略歴:
2011年 東京工業高等専門学校 専攻科 物質工学専攻 修了(町田 茂 教授
2013年 東京工業大学大学院 総合理工学研究科 化学環境学専攻 修士課程修了(穐田宗隆 教授
2016年 東京工業大学大学院 総合理工学研究科 化学環境学専攻 博士課程修了(吉沢道人 准教授
2016年 東京工業大学 特別研究員(穐田・吉沢研究室
2017年 現職

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アントンパール 「Monowave300」: マイクロ波有機合成…
  2. 環状ペプチドの効率的な化学-酵素ハイブリッド合成法の開発
  3. 触媒的不斉交差ピナコールカップリングの開発
  4. 炭素繊維は鉄とアルミに勝るか? 1
  5. 第8回平田メモリアルレクチャー
  6. 果たして作ったモデルはどのくらいよいのだろうか【化学徒の機械学習…
  7. 投票!2013年ノーベル化学賞は誰の手に??
  8. 未来の化学者たちに夢を

注目情報

ピックアップ記事

  1. ホウ素 Boron -ホウ酸だんごから耐火ガラスまで
  2. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン・対面併設|進化する高分子材料 表面・界面制御 Advanced コース
  3. 血液―脳関門透過抗体 BBB-penetrating Antibody
  4. Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析
  5. ChemDrawの開発秘話〜SciFinder連携機能レビュー
  6. ロバート・ノールズ Robert R. Knowles
  7. カスケード反応 Cascade Reaction
  8. ケムステの記事が3650記事に到達!
  9. 3つのラジカルを自由自在!アルケンのアリール-アルキル化反応
  10. 電解液中のイオンが電気化学反応の選択性を決定する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年11月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP