[スポンサーリンク]

スポットライトリサーチ

キノコから見いだされた新規生物活性物質「ヒトヨポディンA」

[スポンサーリンク]

第173回目のスポットライトリサーチは、理化学研究所 環境資源科学研究センター ケミカルバイオロジー研究グループ・大高潤之介 博士にお願いしました。

最近は目立った報告が少なくなりつつある天然資源からの生物活性物質の単離・構造決定、いわゆる「モノトリ」天然物化学。一見地味な分野なのですが、人間の頭脳からはどうやっても発想できない特異な構造が見いだされることも多く、医薬生物応用を目指して今でも研究は続けられています。

今回の成果もその一つであり、非常に特徴的なヘミアセタール構造を有する三環性化合物がキノコの仲間から新たに単離されました。Org. Lett.誌原著論文とプレスリリースにて公開されています。

“Structures and Synthesis of Hitoyopodins: Bioactive Aromatic Sesquiterpenoids Produced by the Mushroom Coprinopsis cinerea”
Otaka, J.; Shimizu, T.; Futamura, Y.; Hashizume, D.; Osada, H. Org. Lett. 2018, 20, 6294. DOI: 10.1021/acs.orglett.8b02788

研究室を主宰されている長田裕之 グループディレクターから、大高さんについて以下の様な評を頂いており、次世代の天然物化学を担う人材となるべく期待が持たれています。それではインタビューをご覧下さい!

天然物化学の中で、物取り、構造解析を行う若者が減ってきているように思います。際立った生物活性か、面白い化学構造を持った化合物が見つかれば、良いのですが、そうでないとあまり評価されない研究分野です。大高くんは、自分の強みと弱みを理解して、足りない部分をいろいろな専門家に相談して、自分の研究を遂行しています。大高くんには、従来の物取り屋とは違ったサイエンスを目指して欲しいと思いますし、それができる人材だと思っています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

ヒトヨタケ(一夜茸)属キノコは名前の通り、子実体形成までの期間が短いことから分子生物学的研究の材料にされていますが、化学的には未開拓な環境資源でした(図)。今回、私たちはモデルキノコ・ウシグソヒトヨタケの培養液から特徴的な骨格を持つ二次代謝物質の探索を行いました。その結果、目的化合物の取得に成功し、その絶対立体配置を有機合成と単結晶X線結晶構造解析により完全に決定し、「ヒトヨポディンA」と命名しました。さらに、生理活性試験の結果、ヒトヨポディンAは白血病細胞HL-60とマラリア原虫に対し、生育阻害活性を示すことが明らかになりました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究テーマを行うきっかけは、同キノコ培養液から新規骨格を有する高次に水酸化されたノルセスキテルペノイド、ヒトヨールAとヒトヨールBを得たことでした(2017年)。ヒトヨール類の生合成予想前駆体ラゴポディンAのケトンの位置が異なるエノキポディンBがエノキタケから単離されていること、エノキポディンBの前駆体エノキポディンAが特異な骨格と抗菌活性を持っていたことから、ウシグソヒトヨタケでもユニークな構造を持つ生理活性前駆体を造る能力があると予想しました。そこで実際にウシグソヒトヨタケ培養液のUVスペクトルスクリーニングを行なった結果、今回、ヒトヨポディンAを見出すことができました。従来は、根性で新規天然物を探していましたが、最近ではゲノム解読結果に基いた化合物探索が盛んになってきました。今回は、化学マイニングとでも言うべき方法で新規化合物を見出しました。いずれにせよ、運に恵まれたと感じています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

絶対立体配置の決定です。本キノコから得た化合物群は将来的に応用研究に繋げたいと考えていたので、絶対配置は完全に決定する必要がありました。NMRからでは相対立体配置の決定すらできなかった化合物もありましたが(ヒトヨールA)、専門家(ECD、X線結晶構造解析、有機合成)のご協力や数多くのディスカッションのおかげで完全に解明できました。理研に来て、構造決定における複眼的判断の重要性を深く学べました。
あと、ヒトヨポディンAの骨格の命名(benzoxabicyclo[3.2.1]octane)についても議論の対象になりました。人が寄ってくるように「ヒトヨールA」など簡単に名付けられれば良いのですが(笑)。

Q4. 将来は化学とどう関わっていきたいですか?

天然物有機化学を基盤に、大衆的で、かつ面白い研究を実施・発信していきたいです。最終的には、ユニークな生理活性や骨格を持たない化合物にも個性を与えられるような研究を展開したいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまで読んでいただき、ありがとうございました。自然界には様々な現象があふれています。固定観念にとらわれず、自分自身に正直になって取り組むと予期せぬサイエンスに出会えると思います。気楽に行きましょう!

最後になりましたが、共同研究者の方々、ケミカルバイオロジー研究グループの皆様に、この場をお借りして厚く御礼申し上げます。

研究者の略歴

名前:大高潤之介(おおたかじゅんのすけ)
所属:国立研究開発法人 理化学研究所 環境資源科学研究センター ケミカルバイオロジー研究グループ 基礎科学特別研究員
研究テーマ:天然物有機化学、化学生態学、ケミカルバイオロジー

略歴:
2009年3月 明治大学農学部農芸化学科卒業
2011年3月 明治大学大学院農学研究科農芸化学修士課程修了(同上)
2014年3月 明治大学大学院農学研究科農芸化学博士課程修了(同上)
2014年6月 国立研究開発法人 農業生物資源研究所 植物・微生物相互作用研究ユニット 特別研究員
2015年6月 国立研究開発法人 理化学研究所 環境資源科学研究センター ケミカルバイオロジー研究グループ 特別研究員
2016年4月 より現職

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 付設展示会に行こう!ー和光純薬編ー
  2. ポンコツ博士の海外奮闘録XXIV ~博士の危険地帯サバイバル 筒…
  3. 第94回日本化学会付設展示会ケムステキャンペーン!Part I
  4. 複雑分子を生み出す脱水素型ディールス・アルダー反応
  5. プロセス化学ー合成化学の限界に挑戦するー
  6. 官能基選択的な 5 員環ブロック連結反応を利用したステモアミド系…
  7. Carl Boschの人生 その3
  8. 活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜…

注目情報

ピックアップ記事

  1. 【四国化成ホールディングス】新卒採用情報(2026卒)
  2. NaHの水素原子の酸化数は?
  3. 研究者版マイナンバー「ORCID」を取得しよう!
  4. ドミノ遊びのように炭素結合をつくる!?
  5. 旭化成の吉野彰氏 リチウムイオン電池技術の発明・改良で 2019 年欧州発明家賞を受賞
  6. 【書評】きちんと単位を書きましょう 国際単位系 (SI) に基づいて
  7. 相田 卓三 Takuzo Aida
  8. 博士課程学生の奨学金情報
  9. 【10月開催】マイクロ波化学ウェブセミナー
  10. シクロカサオドリン:鳥取の新しい名物が有機合成された?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年11月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー