[スポンサーリンク]

スポットライトリサーチ

マイクロフロー瞬間pHスイッチによるアミノ酸NCAの高効率合成

[スポンサーリンク]

第168回目のスポットライトリサーチは、東京工業大学中村布施研究室博士後期課程2年の小竹佑磨さんにお願いしました。
中村布施研究室の方を本企画にてご紹介するのは2回目です。(前回のケムステ記事[御舩悠人博士]:副反応を起こしやすいアミノ酸を迅速かつクリーンに連結する
今回ご紹介するのは、マイクロフローシステムを利用した瞬間pHスイッチによるアミノ酸N-カルボキシ無水物(NCA)の高効率合成です。
小竹さんは本年開催された日本化学会年会にて学生講演賞を受賞されるだけでなく、Focus Reviewの執筆にも関わる(論文はこちら)など、今後ますますのご活躍が期待される方です。
プレスリリース詳細はこちらをご覧ください。(迅速・高収率でアミノ酸N-カルボキシ無水物を合成
また、本記事の内容は既に論文化されておりますので元論文の方もご参照ください。

Rapid and Mild Synthesis of Amino Acid N‐Carboxy Anhydrides: Basic‐to‐Acidic Flash Switching in a Microflow Reactor

Y. Otake, H. Nakamura, S. Fuse, Angew. Chem. Int. Ed.2018, 57, 11389-11393.

それでは早速小竹さんへのインタビューをご覧ください!!

Q1. 今回達成されたのはどんな研究ですか?

アミノ酸N-カルボキシ無水物(NCA)は医薬品やそのキャリアとなるポリペプチドの原料として重要です。NCAは約100年前に確立された手法[1,2](強酸性条件、図上段)によって現在も生産されていますが、副反応が起こる点や酸に弱い官能基をもつNCAは合成できない点が問題とされています。一方、塩基性条件下で合成を行えばNCAが速やかに得られますが、望まないNCAの重合反応も同時に進行してしまいます(図中段)。この『塩基性で速やかに反応が進行する一方、目的物が副反応を起こしてしまう』という課題に対し、我々は塩基性から酸性への「瞬間pHスイッチ」を行おうと考えました(図下段)。これにより、重合を抑制しつつ0.1秒でNCAを得ることができました。開発した手法は酸に弱い官能基を損なうことなく、20種全ての天然アミノ酸に適用可能で、多様なNCAの大量・低コスト供給の実現に繋がると期待しています。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

マイクロフロー法を上手く使うことが研究の鍵となりました。原料の無保護アミノ酸は水に、トリホスゲンは有機溶媒に溶解します。従って、本反応では生成したNCAが水で分解されないよう、二相系の混合をごく短時間(0.1秒)で行う必要があります。二相の比界面積は反応容器の大きさに反比例するため、微小な反応容積をもつマイクロフローリアクター内では二相が接触しやすくなり、0.1秒での混合を実現できました。この瞬間混合はNCAの基質適用範囲の拡大にも一役買っています。pHスイッチ後の反応溶液は、NCAと塩酸が混在した状況であり、酸に弱い官能基が損なわれる恐れがありました。そこでマイクロフロー法により反応溶液を酢酸エチルで「瞬間希釈」することでこの問題を回避し、高い官能基許容性を実現しました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

NCAの重合反応の抑制が難しかったです。研究当初は塩基性でのNCA合成を目指していましたが、どうしても重合反応が抑えられずに収率が伸び悩んでいました。そこで、トリホスゲンをわざと小過剰量使用し、pHスイッチを行うこととしました。すなわち、まず求核性の高いアミノ酸とトリホスゲンが反応し、NCAが生成します。そのあとで溶媒の水が残存するトリホスゲンを分解して生じる塩酸により系中が酸性になるよう反応を設計しました。これにより重合を起こすことなく、反応を0.1秒で完結させることができました。NCA合成に元来必要なトリホスゲンを「内在性の酸」として利用するアイデアにより、外部から酸を添加することによる廃棄物の増加、反応装置の複雑化を防いでいます。

Q4. 将来は化学とどう関わっていきたいですか?

マイクロフロー合成の分野を極めて、化学と社会に貢献していきたいと考えています。今回の研究のように「マイクロフローでしか実現できない」化学を追求していき、高効率かつ少労力な有機合成、つまり地球にも人にも優しい技術を開発していくのが目標です。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は当初NCAを「使う」研究をしていたのですが、なかなかうまく行かず一度断念しました。しかし、どうしても諦めがつかず1年後にNCAを「作る」ことに焦点を当て、再チャレンジして今回の成果に繋がりました。離れている間に得た知識や経験が、思いがけない形で本研究に役立ちました。研究が行き詰まったとき、絶対に戻ってきて完成させるぞと誓いつつ、思い切って一度離れてみる。一つの方法として、読者の皆様の参考になれば嬉しいです。

 

最後に、これまでの研究においてご指導、ご助言を頂きました布施新一郎准教授、中村浩之教授、田中浩士准教授に深く御礼申し上げます。また、中村・布施研究室、田中・田中研究室の皆様に深く感謝いたします。

略歴


名前:小竹 佑磨(おたけ ゆうま)

所属:東京工業大学 生命理工学院 生命理工学系 中村・布施研究室 博士二年

研究領域:マイクロフロー合成、ペプチド合成

経歴:

2011年3月 石川県立金沢泉丘高等学校 卒業

2015年3月 東京工業大学工学部化学工学科応用化学コース 卒業

2017年3月 東京工業大学大学院理工学研究科応用化学専攻 卒業

2017年4月-現在 東京工業大学生命理工学院生命理工学系 博士課程

2018年7月-2018年12月 Graz大学 C. O. Kappe研究室 留学

参考文献

[1] F. Fuchs, Ber. Dtsch. Chem. Ges., 1922, 55, 2943–2943. DOI: 10.1002/cber.19220550902
[2] A. C. Farthing, J. Chem. Soc., 1950, 3213–3217. DOI: 10.1039/JR9500003213

 

gladsaxe

投稿者の記事一覧

コアスタッフで有りながらケムステのファンの一人。薬理化合物の合成・天然物の全合成・反応開発・計算化学を扱っているしがない助教です。学生だったのがもう教員も数年目になってしまいました。時間は早い。。。

関連記事

  1. エキノコックスにかかわる化学物質について
  2. 論文執筆で気をつけたいこと20(1)
  3. 微生物の電気でリビングラジカル重合
  4. まっすぐなペプチドがつまらないなら「さあ輪になって踊ろ!」
  5. ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発…
  6. ルーブ・ゴールドバーグ反応 その1
  7. ケムステスタッフ Zoom 懇親会を開催しました【後編】
  8. 「全国発明表彰」化学・材料系の受賞内容の紹介(令和元年度)

注目情報

ピックアップ記事

  1. 映画「分子の音色」A scientist and a musician
  2. クロロラジカルHAT協働型C-Hクロスカップリングの開発
  3. ウォルター・コーン Walter Kohn
  4. 分子振動と協奏する超高速励起子分裂現象の解明
  5. 特許資産規模ランキング トップ3は富士フイルム、LG CHEM、住友化学
  6. ジルコノセン触媒による第一級アミドとアミンのトランスアミド化反応
  7. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末
  8. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  9. 有機反応を俯瞰する ー付加脱離
  10. いま企業がアカデミア出身者に期待していること

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年11月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー