キラルなルイス酸触媒を用いた新規シクロブタノン不斉合成法が開発された。高いジアステレオ/エナンチオ選択性でドミノシクロプロパン化/セミピナコール転位が進行する。
触媒的不斉シクロブタノン合成
シクロブタン誘導体は、医薬品及び天然物に頻出する骨格である。特にシクロブタノンは環ひずみを利用した開環及び環拡大反応により様々な化合物へ合成できる有用なビルディングブロックであり、近年この骨格の触媒的不斉合成法の開発がいくつか成されている。例えば、最近Dongらはコバルトを触媒とする分子内不斉ヒドロアシル化を用いたシクロブタノンの合成を報告した(図1A)[1]。一方で、シクロプロパノール誘導体の触媒的セミピナコール転位によるシクロブタノン合成法がいくつか報告されている。Alexakisらはキラルリン酸(CPA)触媒存在下、アルケニルシクロプロパノールのセミピナコール転位によるβ–ハロスピロシクロブタノン合成を開発している(図1B)[2]。不斉遷移金属触媒を用いた例としてはTosteらが金を、Trostらがパラジウムを触媒としてアルケニルシクロプロパノールのセミピナコール転位をそれぞれ報告している(図1C)[3]。また、酸、塩基、熱によるカルボニル部位に対するセミピナコール転位によるシクロブタノン合成も報告されているが、エナンチオ選択的な例はない(図1D)[4]。
今回、Ryu教授らはLewis酸触媒にキラルオキサボロリジニウムイオン(COBI)を用いて、α–シリルオキシアクロレインとジアゾエステルとの反応で、連続的にシクロプロパン化/セミピナコール転位を起こし、高ジアステレオ/エナンチオ選択的に隣接した2つの不斉中心をもつシクロブタノンの合成に成功したので紹介する(図1E)。
“Asymmetric Synthesis of Cyclobutanone via Lewis Acid Catalyzed Tandem Cyclopropanation/Semipinacol Rearrangement”
Shim, S. Y.; Choi, Y.; Ryu, D. H. J. Am. Chem. Soc.2018, 140, 11184−11188. DOI: 10.1021/jacs.8b06835
論文著者の紹介
研究者:Do Hyun Ryu
研究者の経歴:
1993-1997 Ph. D., Department of Chemistry, KAIST (Prof. Sung Ho Kang)
1997-2001 Associate Research Scientist, SK Chemicals, Life Science Institute
2000-2002 Postdoc Fellow, Harvard Medical School (Prof. Robert R. Rando)
2002-2005 Postdoc Fellow, Harvard University (Prof. E. J. Corey)
2005-2009Assistant Professor, Sungkyunkwan University
2009-2015Associate Professor, Sungkyunkwan University
2015- Professor, Sungkyunkwan University
研究内容:触媒開発、不斉反応開発、全合成研究、ケミカルバイオロジー
論文の概要
著者らはこれまでに、COBI触媒を用いた不飽和アルデヒドとジアゾエステルとの不斉シクロプロパン化を報告している[5]。今回、α–シリルオキシアクロレインに対して同様の手法を用いて1-ホルミル-1-シリルオキシシクロプロパン1が生成すれば、連続的にセミピナコール転位が起こりシクロブタノン2が得られると考えた。実際に想定どおりに反応が進行し、広範なジアゾエステルが適用可能であった(図2A)。ハロゲン、シアノなどの官能基をもつアリール基、アルキル基、嵩高いエステルをもつジアゾエステルを用いても、高収率、高ジアステレオ/エナンチオ選択的に反応が進行する。
著者らは種々の対照実験の結果から、遷移状態4を経由してシクロブタノン2が生成する機構を提唱した(図2B)。まず、COBI触媒が不飽和アルデヒドのカルボニル部位に配位することで面選択的にジアゾエステルの1,4-付加が起こり、続くシクロプロパン化によって4が生成する。さらにCOBI触媒によって活性化されているカルボニル部位に対してセミピナコール転位が起こり、シリル移動を経て目的のシクロブタノン2が得られる。
以上、連続した不斉中心をもつ新たなシクロブタノン合成法が報告された。本手法は今後、様々な複雑化合物の有用な合成中間体としての応用が期待できる。
参考文献
- Kim, D. K.; Riedel, J.; Kim, R. S.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 10208. DOI:10.1021/jacs.7b05327
- Romanov-Michailidis,F.;Gueńeé,L.;Alexakis, Angew. Chem., Int. Ed. 2013, 52, 9266. DOI: 10.1002/anie.201303527
- [a]Kleinbeck, F.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 9178. DOI: 10.1021/ja904055z[b] Trost, B. M.; Yasukata, T.J. Am. Chem. Soc.2001, 123, 7162. DOI: 10.1021/ja010504c
- [a]Paukstelis, J. V.; Kao, J. L. J. Am. Chem. Soc. 1972, 94, 4783. 10.1021/ja00768a086[b] Appendino, G.; Bertolino, A.; Minassi, A.; Annunziata, R.; Szallasi, A.; de Petrocellis, L.; Di Marzo, V. Eur.J. Org. Chem. 2004, 2004, 3413. DOI: 10.1002/ejoc.200400122
- Gao, L.; Hwang, G.-S.; Ryu, D. H. J. Am. Chem. Soc. 2011,133, 20708. DOI: 10.1021/ja209270e