[スポンサーリンク]

一般的な話題

研究者のためのCG作成術②(VESTA編)

[スポンサーリンク]

Naphtです。研究者のためのCG作成術①に続き、研究者向けのCGの作り方について紹介しようと思います。全て無料でできます。慣れるまではスムーズに作業ができませんが、質問等は随時受け付けますので、コメント欄に記入するか、ご連絡下さい。

今回は、CGを作るのに必要な環境の作成と、結晶構造の可視化プログラムであるVESTAの使い方について説明しようと思います。推奨OSはWindowsです。

-ソフトのインストール-

使用するソフトは結晶構造の可視化プログラムであるVESTA、無料のCG作成ソフトであるBlenderの二つです。以下のリンクからダウンロードできます。VESTAはHPのdownloadから、BlenderはDownload Blender X.XXからご自身のOSに対応するものを選択し、インストールをして下さい。

-VESTAの簡単な使い方-

VESTAは結晶構造を可視化できるプログラムです。Windows環境では、VESTA.exeをクリックすると、ソフトが立ち上がります。無料だとは思えないほど機能が豊富なソフトであり、非常に便利なソフトですが、今回はCG作成のために必要な事項にのみ絞って紹介します。

 

-VESTAで行うことの流れ-

i)Cifファイル(Crystallographic Information File)を手に入れ、VESTAに読み込む。

ii)VESTAで結合を作成する。(例えば、SiO2ならSi-O結合)その後、面を作る。

iii)欲しい範囲で切り出す。

iv)VRMLファイル(.wrl)を作成する。

 

-操作方法-

①Cif ファイルの手に入れ方

Cifファイルは色々なサイトで手に入れることができます。例えば、American Mineralogist Crystal Structure Database  や、Crystallography Open Databaseが使いやすいです。

今回は、Montmorillonite を使用して解説します。以下のリンクからCifファイルを手に入れてください。(Download CIF data をクリックするとダウンロードできます)

②VESTAでCIFファイルを読み込みます。VESTA上で、File→Openとクリックし、先ほどダウンロードしたCifファイルを読み込んでください。

 

③CG作成で使う部分のみですが、VESTAの操作方法を説明します。それぞれのボタンは以下のような役割を持っています。

A 結晶構造の見る位置の変更

B 原子の選択

C 結晶構造の移動

D ズーム

E 原子間の距離の測定

F  3つの原子でできる角の角度の測定

G ○方向から見た結晶構造の表示(001方向等)

H 原子同士の結合が出来ている時に面を張る

I(Objects→Boundary)格子の設定

J(Edit→Bonds)結合の作成

I                                                                                       J

 

これらの機能を使用して、結晶構造をアレンジします。今回はMontmorillonite なので、(Na,Ca)0.33(Al,Mg)2Si4O10(OH)2という式で表されます。この物質は、Al-O結合とSi-O結合によってできる八面体・四面体が面を形成し、電荷補償のためのカチオン(NaやCa)が存在するような構造をしています。

まず、Gにあるaをクリックして、見やすい位置に結晶構造を配置します。その後、格子を拡張するために、Objects→Boundaryから、Ranges of fractional coordinatesをy(max)=2,z(max)=2とします。(J参照)

この時、以下のようになっているはずです。

次に、Si-O結合やAl-O結合を形成させるために、Edit→Bondsから、Bondの設定をします。(I参照)Newを押すと、結合の設定画面がでます。A1と書かれているものが、一つ目の原子、A2と書かれているものが二つ目の原子を表します。

Min.length(Max.length)は結晶構造内でXオングストローム以上(以下)の距離のものに結合を形成させる設定ができるものです。今回は、A1にAlとSi、A2にO、Min.lengthを0、Max.lengthを2として、結合を形成しましょう。

ここまで、操作すると、以下のような画面になっているはずです。

この画面において、H(polyhedral)をクリックすると、面が形成されます。この状態でも、十分プレゼンでも使えると思います。(筆者は、これで満足できなくなったため、Blenderで光や面の色調設定をしています)

この3DデータをBlenderに読み込ませるために、VRMLファイルを作成します。File→Export Dataから、ファイルの種類をVRML file(*.wrl)を選択し、保存すればOKです。

 

これで、BlenderでCGファイルを扱う下準備が出来ました。次の回では、Blenderの基本操作方法を説明しようと思います。その後、光の当たり方等の設定や、結合や面をリアルにする方法を説明しようと思います。

 

参考までに、VESTAで作った画像と、Blenderで作った画像を比較したものが下の図です。リアリティは明らかにBlenderに軍配が上がると思います。

 

今回の記事はここまでとします。質問等は随時受け付けますので、コメント欄に記入するか、ご連絡下さい。

 

関連書籍

[amazonjs asin=”4844366378″ locale=”JP” title=”Blender標準テクニック ローポリキャラクター制作で学ぶ3DCG”][amazonjs asin=”4899774613″ locale=”JP” title=”はじめよう!作りながら楽しく覚えるBlender”]

関連リンク

Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44 (6), 1272–1276.DOI:10.1107/S0021889811038970

Downs, R. T.; Hall-Wallace, M.  Am. Mineral. 200388 (1), 247–250.

Merkys, A., Vaitkus, A., Butkus, J., Okulič-Kazarinas, M., Kairys, V. & Gražulis, S. Journal of Applied Crystallography. 2016, 49. 292-301. DOI:10.1107/S1600576715022396

Gražulis, S., Merkys, A., Vaitkus, A. & Okulič-Kazarinas, M. Journal of Applied Crystallography. 2015 48, 85-91. DOI:10.1107/S1600576714025904

Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T. & LeBail, A. Nucleic Acids Research 2012, 40, D420-D427. DOI: 10.1093/nar/gkr900

Grazulis, S., Chateigner, D., Downs, R. T., Yokochi, A. T., Quiros, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. J. Appl. Cryst. 2009, 42, 726-729. DOI:10.1107/S0021889809016690

Napht

投稿者の記事一覧

企業で働く研究者。サイエンティフィックイラストレーションに興味あり。CG・TOC・Journal Coverを見るのが最近の日課

関連記事

  1. 新人化学者の失敗ランキング
  2. 安全なジアゾ供与試薬
  3. 「イカ」 と合成高分子の複合により耐破壊性ハイドロゲルを開発!
  4. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  5. 非天然アミノ酸合成に有用な不斉ロジウム触媒の反応機構解明
  6. フラーレンが水素化触媒に???
  7. 【大阪開催2月26日】 「化学系学生のための企業研究セミナー」
  8. 四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

注目情報

ピックアップ記事

  1. コロナウイルスCOVID-19による化学研究への影響を最小限にするために
  2. カイザーテスト Kaiser Test
  3. バンバーガー転位 Bamberger Rearrangement
  4. 研究者のためのCG作成術②(VESTA編)
  5. 化学の学びと研究に役立つiPhone/iPad app 9選
  6. 求核剤担持型脱離基 Nucleophile-Assisting Leaving Groups (NALGs)
  7. 光と励起子が混ざった準粒子 ”励起子ポラリトン”
  8. 高活性、高耐久性を兼ね備えた世界初の固体鉄触媒の開発
  9. ピニック(クラウス)酸化 Pinnick(Kraus) Oxidation
  10. アリルオキシカルボニル保護基 Alloc Protecting Group

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP