[スポンサーリンク]

スポットライトリサーチ

可視光で働く新しい光触媒を創出 -常識を覆す複合アニオンの新材料を発見-

[スポンサーリンク]

第148回のスポットライトリサーチは、東京工業大学 理学院 化学系 博士後期課程3年の栗木 亮(くりき りょう)さんにお願いしました。

なんと!栗木さんはスポットライトリサーチ2回目の登場です。とてもレアケースなのですが、最近拝見した栗木さんの論文とプレスリリース内容がとても興味深いものだったので、依頼させていただきました。(栗木さんの1回目のスポットライトリサーチはこちら:光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発)

加えて、なんと栗木さんの所属する石谷・前田研究室はスポットライトリサーチ3回目の登場です。(もう一つのスポットライトリサーチはこちら:光エネルギーによって二酸化炭素を変換する光触媒の開発)

光エネルギーから化学エネルギーへの効率的変換という一大分野において、石谷・前田研究室では非常に高いプロダクティビティで研究が行われていることが伺えます。

今回栗木さんらは、中央大学理工学部の岡研吾助教と共同で、鉛とチタンからなる酸フッ化物が可視光照射下で光触媒として機能することを発見しました。

Ryo Kuriki, Tom Ichibha, Kenta Hongo, Daling Lu, Ryo Maezono, Hiroshi Kageyama, Osamu Ishitani, Kengo Oka, and Kazuhiko Maeda

A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reductions

J. Am. Chem. Soc. 2018, 140, 6648. doi: 10.1021/jacs.8b02822

ぜひ原著論文と合わせて、インタビューをお楽しみください!

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?

酸素と他のアニオンを有する金属酸化物の半導体(例えばTaONなど)は、太陽光の大部分を占める可視光を有効に利用できる光触媒材料として世界中で研究が行われています。しかし、半導体のバンド構造上の制約から、適用できるアニオンは “酸素より電気陰性度が小さいもの(つまりNやBr、Cl、Iなど)”に限られてきました。つまり、酸フッ化物は「可視光応答に不適当な材料群」だと広く認識されてきました。

今回私たちは、鉛とチタンからなる酸フッ化物の半導体(Pb2Ti2O5.4F1.2)が特異的に可視光照射下で安定な光触媒として機能することを発見し、さらに新しい視点から可視光応答の起源を明らかにしました。この成果は同様の視点に立った新しい材料群の発見に繋がると考えられます。

 

 

酸フッ化物半導体(Pb2Ti2O5.4F1.2)の特異的な可視光吸収と多様な光触媒反応の例

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

一般的に半導体を用いた光触媒反応は水中で行われますが、酸フッ化物の半導体(Pb2Ti2O5.4F1.2)は疎水性のため水中では反応が進行しませんでした。そのため、今回は一般的にあまり検討が行われていない有機溶媒に注目しました。結果として一連の反応は駆動し、酸フッ化物半導体(Pb2Ti2O5.4F1.2)が可視光で駆動する安定な光触媒であることの証明に成功しました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

光触媒の有用性を証明する大切な反応の一つに、水を酸化し酸素を生成する反応があります。Pb2Ti2O5.4F1.2自身は水の酸化が原理的には可能な材料であることが実験から分かりましたが、疎水性であることも相まった結果、水との相性が悪く、実際の実験では水の酸化反応の駆動を確認することが困難でした。そこで通常とは少し異なる手法として、今回私は18Oで標識された水(H218O)を含む条件で反応を行い、少し強引に18O2の観測を試みることにしました。再現実験を何度も行なった結果、18O2の生成を証明し、Pb2Ti2O5.4F1.2の優れた酸化能力を実証しました。

Q4. 将来は化学とどう関わっていきたいですか?

今まではアカデミアの視点で化学の研究を行ってきましたが、今後は企業の視点でも研究を行い、「化学」についての視野を広げたいと思います。将来的にはアカデミアの研究と企業の研究を何らかの形で繋げる「窓口」のような人材になりたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

本研究は指導教員である前田先生、石谷先生をはじめとして、中央大学の岡先生、北陸先端科学技術大学院大学の本郷先生など、様々な専門の先生方との協力のもとで生まれました。一連の研究を通して、多様なバックグラウンドを有する方と協力し分野をまたいで研究を行うことで、自分だけでは生み出せない新しい成果につながると痛感しました。人との繋がりを大切にし、また常に視野を広く持ち、今後も研究に取り組みたいと思います。

研究者の略歴

名前:栗木 亮 (くりき・りょう)

所属:

2016年4月-現在 東京工業大学理学院化学系, 石谷・前田研究室 (博士後期課程)

2017年4月-現在 日本学術振興会特別研究員 (DC2)

研究テーマ:

有機半導体と金属錯体からなる二酸化酸素還元光触媒系の創製

Avatar photo

めぐ

投稿者の記事一覧

博士(理学)。大学教員。娘の育児に奮闘しつつも、分子の世界に思いを馳せる日々。

関連記事

  1. 電解液中のイオンが電気化学反応の選択性を決定する
  2. 化学英語論文/レポート執筆に役立つPCツール・決定版
  3. ケムステ版・ノーベル化学賞候補者リスト【2020年版】
  4. 第25回 名古屋メダルセミナー The 25th Nagoya …
  5. 引っ張ると頑丈になる高分子ゲル:可逆な伸長誘起結晶化による強靭性…
  6. 研究室でDIY! ~明るい棚を作ろう~
  7. 細胞内で酵素のようにヒストンを修飾する化学触媒の開発
  8. 電子1個の精度で触媒ナノ粒子の電荷量を計測

注目情報

ピックアップ記事

  1. 第32回「生きている動物内で生理活性分子を合成して治療する」田中克典 准主任研究員
  2. 東北地方太平洋沖地震に募金してみませんか。
  3. 【11月開催】第3回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の触媒としての利用-シリコン、シリコーン硬化触媒としての利用-
  4. 反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo 糖化学ノックインインタビュー②】
  5. 超強塩基触媒によるスチレンのアルコール付加反応
  6. ルーブ・ゴールドバーグ反応 その1
  7. 松原 亮介 Ryosuke Matsubara
  8. 親子で楽しめる化学映像集 その1
  9. ブレデレック オキサゾール合成 Bredereck Oxazole Synthesis
  10. 電子デバイス製造技術 ーChemical Times特集より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー