[スポンサーリンク]

化学者のつぶやき

ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click反応

[スポンサーリンク]

2017年、アルバータ大学・Dennis G. Hallらは、細胞毒性の低いボロン酸とジオール間でのボロン酸エステル形成に注目し、これをヒドラゾン形成と組み合わせることで不可逆的に複合体を形成し、生細胞コンジュゲーションに応用することに成功した。

“Synergic “Click” Boronate/Thiosemicarbazone System for Fast and Irreversible Bioorthogonal Conjugation in Live Cells”
Akgun, B.; Li, C.; Hao, Y.; Lambkin, G.; Derda, E.; Hall, D. G.* J. Am. Chem. Soc. 2017, 139, 14285. DOI: 10.1021/jacs.7b08693

問題設定と解決した点

毒性の低い試薬で細胞内でも進行する生体直交反応は、生体分子の細胞内機能を理解するのに役立つツールである。特に低濃度・水系溶媒中で高い反応性・選択性を示し、副生成物なしで高収率で進行するような“クリック”ケミストリーは、開発の中心となっている。
このような反応開発を目指し、Hallらはボロン酸エステル形成に基づく新規な生体直交反応を報告した[1]。nopoldiol誘導体および2-メチル-5-カルボキシメチルフェニルボロン酸によって得られるボロン酸エステルの安定性は高いが、水中で逆反応がわずかに進行してしまうことが問題だった(下図)。

技術や手法のキモ

生体直交反応の文脈で用いられるイミン・ヒドラゾン・オキシム形成に注目し、それを第2の相乗的相互作用とすることでより安定な複合体を合成できると考え、試薬骨格の最適化を行った。

ジオール構造をnopodiolに固定し、様々なC=X結合を意図した相互作用部位構造の組み合わせ検討を行なったところ、オルト位にメチルケトンをもつボロン酸、フェニルヒドラジンよりも安定・安全だとする報告[4]があるチオセミカルバジドをnopodiolに2炭素リンカーで連結させた冒頭図のような組み合わせを最適構造として得た。反応を行ったところ、50 μM濃度で3.5時間以内に定量的な複合体形成が達成された。

主張の有効性検証

①生体条件下における複合体の安定性確認

ボロン酸+ジオールチオセミカルバジド試薬で複合体を組ませた後、別のボロン酸を過剰量加えて数日放置してもボロン酸の交換は観測されない。希釈条件、pH3及び9のバッファーに対しても安定であり、複合体の開裂は観測されなかった。

②反応の生体直行性の実証

ポリオール構造は糖をはじめとする様々な生体分子に存在する。そこでグルコース(8 mM)、フルクトース(300μM)、またはカテコール(0.1 μM)存在下にボロン酸+ジオールチオセミカルバジド試薬の複合体形成を行なったところ、夾雑物のある/なしで反応の結果が変わらなかった。このことから、生体ポリオールは反応に影響しないことが示された。
また、タンパク質の翻訳後修飾によってケトンおよびアルデヒド構造が導入されうることが近年報告されている[3][4]。それを模したグリオキシルアルデヒドに対しジオールチオセミカルバジド試薬を作用させたが、チオセミカルバゾンの形成は確認されなかった。

③生細胞への応用可能性

それぞれの試薬に対して細胞毒性試験を行ったところ、反応時間相当(18 h)の試験時間では目立った毒性は見られなかった。
その後、HEK293T細胞表面にSNAPタグ法を用いてボロン酸を固定したものを用意し、フルオレセイン結合型ジオールチオセミカルバジド試薬を反応させた。蛍光顕微鏡で観察したところ、細胞表面が蛍光標識されていることが分かった。ジオールを欠いたチオセミカルバジド試薬を代わりに用いたところ、表面蛍光が観測されないことから、両方の協働作用が標識に必須であることがわかる。

議論すべき点

  • PBS buffer、37℃という非常に温和な条件で進行し、金属も不要であるのは利点といえる。
  • 生体直交反応ではあるが、タンパク質の修飾に用いるには非天然アミノ酸の導入を必要とする。天然のアミノ酸からこのボロン酸へと変換するのは、現時点ではさすがに厳しいだろう。一般性を広げるには、より簡便な構造での実施が望まれる。

次に読むべき論文は?

  • 細胞内化学反応を行っている例[5][6]。今回の報告では細胞表面反応にとどまっているが、細胞内で使うにはさらにどのような改良が必要かを考える情報になればいい。

参考文献

  1. Akgun, B.; Hall, D. G. Angew. Chem., Int. Ed. 2016, 55, 3909. doi:10.1002/anie.201510321
  2. Bandyopadhyay, A.; Cambray, S.; Gao, J. J. Am. Chem. Soc. 2017, 139 , 871. DOI: 10.1021/jacs.6b11115
  3. Matthews, M. L.; He, L.; Horning, B. D.; Olson, E. J.; Correia, B. E.; Yates, J. R.; Dawson, P. E.; Cravatt, B. F. Nat. Chem. 2017, 9, 234. doi:10.1038/nchem.2645
  4. Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13. doi:10.1038/nchembio0605-13
  5. Agarwal, P.; Beahm, B. J.; Shieh, P.; Bertozzi, C. R. Angew. Chem. Int. Ed. 2015, 54, 11504. doi:10.1002/anie.201504249
  6. Li, S.; Wang, L.; Yu, F.; Zhu, Z.; Shobaki, D.; Chen, H.; Wang, M.; Wang, J.; Qin, G.; Erasquin, U. J.; Ren, L.; Wang, Y.; Cai, C. Chem. Sci. 2017, 8, 2107. doi:10.1039/C6SC02297A
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 分子形状初期化法「T・レックス」の実現~いつでもどこでも誰でも狙…
  2. MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-…
  3. 専門用語(科学英単語)の発音
  4. 化学と工業
  5. 遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反…
  6. サラダ油はなぜ燃えにくい? -引火点と発火点-
  7. プラスチックに数層の分子配向膜を形成する手法の開発
  8. 【10月開催】第2回 マツモトファインケミカル技術セミナー 有機…

注目情報

ピックアップ記事

  1. テオ・グレイ Theodore Gray
  2. 東北地方太平洋沖地震に募金してみませんか。
  3. ラッセル・コックス Rusesl J. Cox
  4. 化学者ネットワーク
  5. 有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング
  6. アルケンでCatellani反応: 長年解決されなかった副反応を制御した
  7. ヘイオース・パリッシュ・エダー・ザウアー・ウィーチャート反応 Hajos-Parrish-Eder-Sauer-Wiechert Reaction
  8. メカノケミカル有機合成反応に特化した触媒の開発
  9. 自己会合・解離機構に基づく蛍光応答性プローブを用いたエクソソーム高感度検出
  10. 第97回 触媒化学融合研究センター講演会に参加してみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー