[スポンサーリンク]

化学者のつぶやき

酸素を使った触媒的Dess–Martin型酸化

[スポンサーリンク]

酸素を再酸化剤として用いる触媒的Dess–Martin型酸化が報告された。豊富に存在する酸素を再酸化剤として用いることで環境調和型のプロセスが期待される。

 酸素を用いた酸化反応

酸素分子(O2)を用いて有機化合物を酸化する反応(自動酸化)は、環境調和の観点から最も理想的である。しかし安定な三重項基底状態のO2による一重項状態の有機分子の酸化は起こりにくいことから、O2を酸化剤として用いることは難しい。これまでO2を酸化剤とすべく、いくつかの酸化還元触媒を“仲介役”に用いる酸化反応が知られている。例えばニトロキシドラジカルや遷移金属、キノン類を電子移動媒体(ETM)とし自動酸化を行う手法がある[1]

ごく最近、触媒量のヨードアレーンからIII価の超原子価ヨウ素化合物を自動酸化により発生させる手法が報告された。2017年に宮本・内山らはO2とアルデヒド存在下、触媒的に超原子価ヨウ素(III)を発生させることでジオールの酸化開裂を報告した。同時期にPowersらもO2とアルデヒド存在下、触媒量の塩化コバルトを反応開始剤とし、同様に触媒量のヨードアレーンを用いた自動酸化によるスチレンのジアセトキシ化などを報告した[2,3](図1A)。両報告において、O2(と塩化コバルト)によってアルデヒドから生じる過酸が、III価のヨードシルアレーンを触媒的に生成している(図1B)。

今回Powersらはこの手法を拡張し、IBXDMPに代表されるV価の超原子価ヨウ素化合物を触媒的に発生させ、自動酸化を行うことに成功した。オルト位に配位可能な官能基をもつヨードアレーン1を用いることでV価のヨージドアレーン2が発生し、様々な酸化反応に適用できる(図1C)。

図1. (A) I(III)化合物を用いた自動酸化 (B) 自動酸化によるI(III)の生成機構 (C)今回報告したI(V)化合物を用いた自動酸化

 

“Oxidation Catalysis by an Aerobically Generated DessMartin Periodinane Analogue”
Maity, A.; Hyun, S.-M.; Wortman, A. K.; Powers, D. C. Angew. Chem., Int. Ed. 2018,57, 7205. DOI: 10.1002/anie.201804159

論文著者の紹介

研究者:David C. Powers


研究者の経歴:
2002-2006 B.A., Franklin & Marshall College, Lancaster, PA (Prof. Phyllis A. Leber)
2006-2011 Ph.D, Harvard University, Cambridge, MA (Prof. Tobias Ritter)
2011-2015 Posdoc, Massachusetts Institute of Technology and Harvard University (Prof. Daniel G. Nocera)
2015- Assistant Prof. at Texas A&M University, College Station, TX
研究内容:有機、有機金属および無機固体触媒を用いた新規反応開発

論文の概要

PowersはIII価のヨードシルアレーンによる自動酸化の報告において、スルホニルをもつヨードアレーン1を用いるとV価のヨージドアレーン2が得られることを見出している。今回、このV価ヨージドアレーン2を経由する自動酸化の条件を検討した。Powersらはまず化学量論量の2を用いて検討を行い、2の反応性を調査した。1,2-ジオール7を基質に用いた際に開裂体8が得られた[4]ことなどから、2はIBX等価体ではなくDMP等価体として振る舞うことが示唆されている(論文参照)。
次にPowersらは触媒反応へ展開すべく、O2存在下、触媒量の1と塩化コバルト、ブチルアルデヒドを用いて種々の酸化反応を行った(図2A)。その結果、第二級アルコールをケトンへと酸化できることや1,2-ジオール7では酸化的開裂が進行すること、1,4-ジオール9ではラクトン10が生成することがわかった。また、第一級アルコールでは過剰酸化をうけカルボン酸が得られる。
機構解明実験として、1から3の生成過程を1H NMRで観測した(図2B)。その結果、I(III)価種3が全く観測されなかったことから、本反応の活性種であるI(V)価種23の不均化によって生成していることが示唆された。すなわち、I価のヨードアレーン1がコバルト、O2とアルデヒドによって酸化され、まずIII価のヨードシルアレーン3が生成するが、3は瞬時に不均化を起こしヨードアレーン1とV価のヨージドベンゼン2となる。

図2. (A)自動酸化の 基質適用範囲 (B)推定機構

ヨージドアレーン2の安定性と系中で生じる過酸の爆発性が気になるものの、I(V)種を用いる触媒的な酸化反応の今後の新たな展開が期待される。

参考文献

  1. Piera, J.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2008,47, 3506. DOI: 10.1002/anie.200700604
  2. Maity, A.; Hyun, S.-M.; Powers, D. C. Nature Chem. 2018, 10, 200. DOI: 10.1038/nchem.2873
  3. Miyamoto, K.; Yamashita, J.; Narita, S.; Sakai, Y.; Hirano, K.; Saito, T.; Wang, C.; Ochiai, M.; Uchiyama, M. Nature Commun.2017, 53, 9781. DOI: 10.1039/c7cc05160c
  4. De Munari, S.; Frigerio, M.; Santagostino, M. J. Org. Chem. 1996, 61, 9272. DOI:10.1021/jo961044m
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング
  2. 今こそ天然物化学☆ 天然物化学談話会2021オンライン特別企画
  3. スケールアップで失敗しないために 反応前の注意点
  4. 有機合成化学協会誌2021年12月号:人工核酸・Post-com…
  5. NPG asia materialsが10周年:ハイライト研究収…
  6. HTML vs PDF ~化学者と電子書籍(ジャーナル)
  7. 高機能な導電性ポリマーの精密合成法の開発
  8. アロタケタールの全合成

注目情報

ピックアップ記事

  1. スケールアップ実験スピードアップ化と経済性計算【終了】
  2. 超原子価ヨウ素を触媒としたジフルオロ化反応
  3. 【速報】2018年ノーベル化学賞は「進化分子工学研究への貢献」に!
  4. CASがSciFinder-nの画期的逆合成プランナーの発表で研究・開発の生産性向上を促進
  5. ペルフルオロデカリン (perfluorodecalin)
  6. 2017卒大学生就職企業人気ランキングが発表
  7. 抗生物質の話
  8. 3-メチル-1-フェニル-2-ホスホレン1-オキシド:3-Methyl-1-phenyl-2-phospholene 1-Oxide
  9. オペレーションはイノベーションの夢を見るか? その1
  10. 一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー