[スポンサーリンク]

化学者のつぶやき

抽出精製型AJIPHASE法の開発

[スポンサーリンク]

2017年、味の素社の高橋大輔らは、ペプチド液相合成法であるAJIPHASE法にさらなる改良を加え、沈殿精製の代わりに、抽出精製を用いてone-potでペプチド合成を行える手法を開発した。

“AJIPHASE: A Highly Efficient Synthetic Method for One-Pot Peptide Elongation in the Solution Phase by an Fmoc Strategy”
Takahashi, D.*; Inomata, T.; Fukui, T. Angew. Chem. Int. Ed. 2017, 56, 7803-7807. doi:10.1002/anie.201702931

問題設定

AJIPHASE法とは、ペプチドC末に長鎖アルキルアンカー分子を接続することで低極性有機溶媒中での縮合→脱保護後に極性溶媒添加による沈殿精製を可能とし、ペプチド鎖を液相で繰り返し伸長させる手法である[1-3]。手順が簡便である固相合成法のメリットと、試薬使用量が少なくてすむ液相合成法のメリットの両方を兼ね備えた特長を持つ。
以前のAJIPHASE法では、沈殿精製過程の溶媒にクロロホルムなど、環境負荷の高いハロゲン系溶媒を用いる必要があった。このため代替法として抽出精製法が検討されてきた。しかしながら伸長中のペプチド中間体の溶解度が悪い場合、抽出が不完全になる問題があり、実用的な手法にはなっていなかった。

汎用性の高い抽出精製型AJIPHASE法を開発するためには、以下の2点を解決する必要があった。

  1. 伸長中のペプチド中間体を完全に有機溶媒に溶解させる
  2. 副生成物を完全に水層に移動させ、取り除けるようにする

技術や手法の肝

著者らは本論文で上記①②の問題解決を成し遂げ、冒頭アイキャッチ画像のような改良型AJIPHASE法の開発に成功した。

問題①について

従来型AJIPHASE法では下図13のような直鎖アルキル型アンカー分子を用いていたが、長鎖ペプチドや疎水性ペプチドであれば有機溶媒に完全に溶解するものの、溶液の粘度が増すことによって抽出が不完全になる場合があった。そこで下図右に示すような新たなアンカー分子45を開発することで解決した。アンカー分子のアルキル鎖部位に枝分かれ構造を導入することで、疎水性を上げるとともに溶液粘度の上昇を防ぎ、抽出が容易になる。

問題②について

Fmoc基除去工程で生じるジベンゾフルベン(DBF)や、用いられる塩基が取り除けない場合、後続変換での副反応が懸念される。定法で用いられるピペリジンやジエチレントリアミンではDBFを完全に捕らえることができないため、有機層に多くのDBFが残ってしまう。また、酸性水溶液で洗浄した場合、ペプチドN末端がプロトン化されてエマルジョン化が引き起こされ、抽出が不完全になってしまう。そこでカルボン酸部分とチオールを併せもつ試薬(チオリンゴ酸・メルカプトプロピオン酸など)をDBFスカベンジャーとして用い、塩基性水溶液で洗浄を行なうプロトコルを確立することで解決した。

主張の有効性検証

①アンカー分子の有機溶媒への溶解性

直鎖アンカー12、分岐鎖アンカー45について、クロロホルム、酢酸エチル、シクロペンチルメチルエーテル、トルエンへの溶解性を比較したところ、45の溶解度のほうが数十倍~数千倍高いことが分かった。
さらに、アンカー14を用い、疎水性ペプチドFmoc-Val-Gly-Gly-Val-OHを抽出型AJIPHASE法でそれぞれ合成したところ、アンカー1を用いた場合は4残基目との縮合時に不溶物質が確認されたが、アンカー4を用いた場合は完全に均一な溶液のままであった。

②Fmoc脱保護における副生成物の除去

Fmocの脱保護に、DBUとMpaまたはチオリンゴ酸を用い、塩基性水溶液で洗浄したところ、DBFと塩基の付加体が容易に得られ、水層に除かれることが確認された。

③長鎖ペプチド合成への応用

10残基ペプチドであるDegarelixと、20残基ペプチドであるBivalirudinの合成を、本改良型AJIPHASE法を用いてone-potで達成している。Degarelixは収率85%・純度89%、Bivalirudinは収率73%・純度84%で得られた。また、溶媒として非ハロゲン系溶媒のシクロペンチルメチルエーテル(CPME)を用いても合成可能であり、従来の液相法の1/10の溶媒量で反応を行うことも可能であった。

 

議論すべき点

  • ハロゲン溶媒を使わずにペプチドが合成可能と論文中では述べられているが、DegarelixやBivalirudinの合成はクロロホルムを溶媒として用いて行われている。完全にハロゲン溶媒を回避することのは、収率や純度を考慮するとまだ難しいというのが実情かもしれない。

次に読むべき論文は?

  • 液相法でペプチド合成を行い抽出精製を行っている例として、フルオラス抽出型プロトコルを用いている事例がある[4]。

参考文献

  1. Takahashi, D.; Yamamoto, T. Tetrahedron Lett. 2012, 53, 1936. doi:10.1016/j.tetlet.2012.02.006
  2. Takahashi, D.; Inomata, T. J. Pept. Sci. 2012, 18, S35.
  3. Takahashi, D.; Yano, T.; Fukui, T. Org. Lett. 2012, 14, 4515. DOI: 10.1021/ol302002g
  4. Mizuno, M.; Miura, T.; Goto, K.; Hosaka, D.; Inazu, T. Chem. Commun. 2003, 972. doi: 10.1039/B300682D
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 光学活性なα-アミノホスホン酸類の環境に優しい新規合成法を開発
  2. レビュー多すぎじゃね??
  3. マテリアルズ・インフォマティクスの基本とMI推進
  4. 高難度分子変換、光学活性α-アミノカルボニル化合物の直接合成法
  5. 化学探偵Mr.キュリー8
  6. 超原子価ヨウ素試薬PIFAで芳香族アミドをヒドロキシ化
  7. メチレン炭素での触媒的不斉C(sp3)-H活性化反応
  8. アメリカ大学院留学:卒業まであと一歩!プロポーザル試験

注目情報

ピックアップ記事

  1. 不斉反応ーChemical Times特集より
  2. 平井 剛 Go Hirai
  3. 「医薬品クライシス」を読みました。
  4. 親子で楽しめる化学映像集 その1
  5. 株式会社ナード研究所ってどんな会社?
  6. アレックス・ラドセヴィッチ Alexander Radosevich 
  7. 留学せずに英語をマスターできるかやってみた(1年目)
  8. コーンフォース転位 Cornforth Rearrangement
  9. 【第11回Vシンポ特別企画】講師紹介②:前田 勝浩 先生
  10. 鉄錯体による触媒的窒素固定のおはなし-2

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年5月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー