[スポンサーリンク]

スポットライトリサーチ

原子のシート間にはたらく相互作用の観測に成功

[スポンサーリンク]

第142回目のスポットライトリサーチは、筑波大学数理物質系西堀研究室笠井秀隆先生にお願いしました。

西堀研究室は、先端高エネルギー光源を利用することによって、放射光回折法を物質の同定手段から精密構造の可視化手法に転換するとともに、物質科学研究におけるボトルネックを解消し、その進展に役立つ研究を行っています。今回ご紹介する研究は、高エネルギー光源を活用し、理論予測が難しい層状物質のシート間相互作用を観測したというものです。当研究はNature Material誌に掲載され、大きな注目を集めています(プレスリリースはこちら)。

X-ray electron density investigation of chemical bonding in van der Waals materials

H. Kasai, K. Tolborg, M. Sist, J. Zhang, V. R. Hathwar, M. Ø. Filsø, S. Cenedese, K. Sugimoto, J. Overgaard, E. Nishibori, B. B. Iversen

Nature Materials, 2018, 17, 249. DOI: 10.1038/s41563-017-0012-2

また、西堀先生から笠井先生について、以下のコメントをいただいております。

笠井先生は、2015年に筑波大学の国際テニュアトラック助教に着任以来、デンマーク・オーフス大学と大型放射光施設SPring-8を行き来しつつ精力的な国際共同研究に取り組んできました。一見すると穏やかで大人しい印象の笠井先生ですが、24時間体制10日程度の放射光実験を海外メンバーとともに何度も行っている恐るべき体力と精神力の持ち主です。デンマークの先生たちに彼の印象を聞くと“真のハードワーカー”という言葉が常に返ってきます。また、物理工学科出身で量子力学の数式にも精通しており、3年の短い期間で電子密度解析を習得し成果を上げることに成功しました。テニュア獲得後の今後の活躍に期待しています。

それでは、研究の詳細をどうぞ!

Q1. 今回のプレス対象となったのはどんな研究ですか?

原子のシートが積み重なった層状物質TiS2内の電子の空間分布を高エネルギー放射光により精密に観測することに成功しました。原子のシートを構成するTi原子とS原子間の電子密度分布は、密度汎関数理論によって高精度な予測が可能で、今回の観測値は理論値と非常によく一致しました。このことから、観測した電子密度分布の信頼度の高さと、理論予測の正確性が裏付けられました。一方で、シート間を調べたところ、弱い化学結合を示す電子密度分布が観測されました。シート間のファンデルワールス力の理論予測は発展途上であり、複数の汎関数を用いた計算を試みましたが、観測結果を再現することはできませんでした。シート間の弱い相互作用は層状物質の性質を決定しており、今後、この相互作用の観測によって層状化合物の実験・理論研究の活性化が期待されます。

図1 原子シート内とシート間の化学結合による電子密度分布の球状からの変形。左がシート間の結合、等高線の間隔は0.01 e/Å。右がシート内の結合、等高線の間隔は0.05 e/Å。赤線が正、黒色のダッシュが負の値で電子密度の増減を表す。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

世界最高性能の放射光によって、原子のシート間の電子分布を観測できました。

顕微鏡と実験室X線を用いた良質な単結晶の選定、ビームタイムの計画、ビームタイムにおける集中、共同実験者とのチームワークによって、質の高いX線回折データを得ることができました。この回折データを用いて、結晶学と電子密度解析手法を学んで電子の空間分布を可視化することができました。学生とスタッフが参加する勉強会、ミーティング、周りの結晶学者への質問など、わからないことは聞くことをたくさん繰り返しました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

放射光X線回折データからHansen-Coppens多極子モデルを用いて電子密度分布を可視化する解析に最も時間を使いました。内殻電子の歪み、Ti原子の層間への挿入の可能性、グラムシャリエ展開の温度因子を用いた非調和熱振動などを試しました。また、2次元回折パターンから回析ピーク強度の導出に立ち戻ることも何度もありました。可能なモデルをすべて試すことで本研究結果を得ることができました。

Q4. 将来は化学とどう関わっていきたいですか?

化学結合を観測する研究で、物質の機能発現の源を明らかにし、科学的知見に基づく材料開発につなげることを目指します。放射光源は進化を続けており、これまで見えなかったものが見えるようになっていくと期待されます。その最先端放射光を最大限活用して物質を観測する研究をしていきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

X線などの量子ビームで観測できる原子配列等の構造は、物質科学分野で最も基盤的な情報です。量子力学と結びつき固体物理学として発展した半導体や金属材料だけでなく、創薬やエコタイヤ開発など基礎科学から産業イノベーション分野に波及し続けています。量子ビームを用いた物質科学は、量子ビーム源の発展により益々重要になっていくと思います。

最後に、本研究を遂行するにあたり、ご指導いただいた西堀英治教授とBo B. Iversen教授に心より感謝申し上げます。また今回の国際共同研究の機会を与えていただいた筑波大学の国際テニュアトラック制度に深く感謝申し上げます。

関連リンク

筑波大学数理物質系西堀研究室

筑波大学プレスリリース

研究者の略歴

名前:笠井 秀隆(かさい ひでたか)

所属:筑波大学 数理物質系, エネルギー物質科学研究センター(TREMS)

研究テーマ:構造科学

Orthogonene

投稿者の記事一覧

有機合成を専門にするシカゴ大学化学科PhD3年生です。
趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。
ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。

http://donggroup-sites.uchicago.edu/

関連記事

  1. スチレンにCoのHATをかぶせれば、インドールを不斉アルキル化
  2. 金属中心に不斉を持つオレフィンメタセシス触媒
  3. サイエンス・コミュニケーションをマスターする
  4. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チ…
  5. 日本化学会がプロモーションムービーをつくった:ATP交流会で初公…
  6. 捏造は研究室の中だけの問題か?
  7. 【Spiber】新卒・中途採用情報
  8. 有機合成化学総合講演会@静岡県立大

注目情報

ピックアップ記事

  1. ポリメラーゼ連鎖反応 polymerase chain reaction(PCR)
  2. 有機合成化学協会誌2019年11月号:英文版特集号
  3. 第81回―「均一系高分子重合触媒と生分解性ポリマーの開発」奥田 純 教授
  4. ベロウソフ・ジャボチンスキー反応 Belousov-Zhabotinsky(BZ) Reaction
  5. 日本農芸化学会創立100周年記念展に行ってみた
  6. プラテンシマイシン /platensimycin
  7. 誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるための秘訣)
  8. 立体規則性および配列を制御した新しい高分子合成法
  9. カルボン酸の保護 Protection of Carboxylic Acid
  10. 飯島澄男 Sumio Iijima

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー