[スポンサーリンク]

化学者のつぶやき

生体組織を人工ラベル化する「AGOX Chemistry」

[スポンサーリンク]

京都大学・浜地格らは、有機触媒としてピリジニウムオキシム(PyOx)を用い、N-アシル-N-アルキルスルホンアミド(NASA)をアシルドナーとするアシル化型タンパク質修飾法の開発に成功した。試験管内での反応に加え、生細胞系に対しても修飾を行うことができ、選択性・安定性・効率も高い。

”Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems”
Tamura, T.; Song, Z.; Amaike, K.; Lee, S.; Yin, S.; Kiyonaka, S.; Hamachi, I.* J. Am. Chem. Soc. 2017, 139, 14181–14191. DOI: 10.1021/jacs.7b07339 (アイキャッチ画像は本論文より引用)

問題設定

生体内環境でのタンパク質の選択的ラベリングは、その構造・機能・挙動・集積を調べるのに有用なツールとなりうる。選択的ラベリング法としては、銅触媒によるアジド‐アルキン環化反応を始めとする様々な生体直交反応が知られている。
しかしながらこれら手法の多くは、

  • 遷移金属を用いるため毒性が高く、生細胞に適用しにくい
  • 遺伝子工学的手法で反応の足がかりとなる非天然構造を導入する必要があり、生体内機能に少なからず影響を及ぼす

などの問題があった。

技術や手法の肝

この問題に対し著者らは、タンパク質特異的なリガンドと有機触媒(DMAP)を組み合わせたリガンド結合部位近傍選択的なアシル化法、「affinity-guided DMAP(AGD) chemistry」を報告していた[1]。このケースではアシルドナーとしてはチオエステルを用いており、タンパク質にリガンド関与で結合したDMAPが求核攻撃を起こすと、活性アシルピリジニウム中間体が形成される。これによりリガンド近傍のLysでのみ反応が進行し、選択的なラベリングを行えるというコンセプトである。
ただこのAGD法にも以下の欠点が知られており、別の有機触媒/アシルドナーが必要とされていた。

  • DMAPの求核力を担保するために塩基性条件が必要(pH > 8)
  • チオエステルの反応性が高く、低温反応させないとバックグラウンドでの非選択的アシル化が進行してしまう。
  • チオエステルが生体条件で分解されてしまう

今回の論文で著者らは、ピリジニウムオキシム(PyOx)を有機触媒、N-アシル-N-アルキルスルホンアミド(NASA)をアシルドナーとした「affinity-guided oxime (AGOX) chemistry」を報告した。
PyOxは塩基性・求核性が高く、中性条件下で加水分解活性を示すことが知られている(pH7.2、37℃でp-nitrophenylacetateの加水分解速度を測定すると、PyOxはDMAPの9倍の活性を示した)。
一方NASAは既知のアシルドナーであり、アミドの一種でありながら求核攻撃を受けやすいため、ペプチド固相合成のC末端リンカーの接合部に用いられていた[2]。非天然構造のため酵素分解に安定であり、スルホニル部(R1)とアミド部(R2)の構造を調節可能である。また、チオエステルと比べると求電子性が低く、バックグラウンド反応も抑えられる。

このように、基本的なコンセプトはAGDと同様だが、いくつかの点で改善が見られている。

主張の有効性検証

PyOxに連結させるリガンドと、NASAアシルドナーの組み合わせを変えることで、様々なタンパク質修飾が可能になる。特に本論文において重要なクレームは

  1. リガンド-PyOx触媒を介した修飾のみが進み、バックグラウンド反応が起きない
  2. 中性・37℃で反応が進行する
  3. 生細胞系への応用可能性(細胞膜上のタンパク質を標的にできる)

の3点である。以下にこれを支持する実験結果を示す。

①FKBP12のビオチン修飾

FKBP12結合リガンド(SLF)とPyOxを連結させた分子(SLF-PyOx)を触媒として用い、Bt-NASAをビオチンドナーとして用い、タンパク質Lys残基のビオチン修飾を行なった。 NASA構造もいろいろ検討しているが、p-ニトロフェニル基を持つ図の構造が最も高い修飾効率を示した。リガンド近傍に位置する反応候補は二つ(Lys44, Lys52)あり、どちらも試薬を加えると定量的に変換されうる。

また、

  • PyOxがないと修飾は起きない
  • SLFに競合するFK506を入れると反応が起きなくなる
  • Bt-NASAはそのチオエステル版試薬より半減期が長い
  • チオエステル版試薬ではバックグラウンドでの反応が起きる

ことから、AGOX Chemistryに特徴的な反応性が示されている。

②生細胞表面における炭酸脱水素酵素(CAⅫ)のフルオレセイン修飾

膜に存在するタンパク質CAⅫを蛍光ラベルしている。ここではさらに触媒活性を上げるため、リガンド(SA)にPyOxを2分子備えたSA-diPyOxを用いている。

SA-diPyOxとフルオレセインラベル化試薬(FL-NASA)をpH7.2、37℃で細胞にかけると反応が進み、3時間で48%のCAが蛍光ラベル化されることがSDS-PAGEモニタリングによって明らかとなった。対照実験としてSA-triDMAPを用いるAGD chemistryでもラベル化を試みているが、非特異的なラベル化がかなり進行してしまう。なお、リガンド-CAII結合阻害剤(EZA)を加えると、やはり修飾は起きなくなる。

 膜表面のタンパク質が蛍光標識されることを利用し、レーザー光退色実験によりその拡散速度[3]も調べている。こちらはGFP融合タンパクで調べた値と一致している。

③マウス脳組織でのAMPARのフルオレセイン修飾

マウスの脳切片を用意し、神経細胞膜に含まれるα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)型グルタミン酸レセプター(AMPAR)を修飾している。リガンドにはPFQXを用いている。
これに関してもAGD系(PFQX-triDMAP)とAGOX系(PFQX-diPyOx)を比較しており、SDS-PAGEでの分析からAGOX系でのみ標識が達成されることを確認している。

議論すべき点

  •  以前の報告と比べると選択性がかなり改善されており、生細胞系にも適合性が高いことを示せている。使用可能なリガンド・アシルドナーの種類も多く、抗体の部位特異的修飾などにもそのまま転用できそうである。
  •  次なる課題は生細胞「内」化学反応への適用だろう。現在未達であることについては著者も言及している。PyOxのピリジン部のカチオン性が細胞膜透過性を著しく下げていることが原因のようだ。

参考文献

  1. (a) Koshi, Y.; Nakata, E.; Miyagawa, M.; Tsukiji, S.; Ogawa, T.; Hamachi, I. J. Am. Chem. Soc. 2008, 130, 245. DOI: 10.1021/ja075684q (b) Wang, H-x.; Koshi, Y.; Minato, D.; Nonaka, H.; Kiyonaka, S.; Mori, Y.; Tsukiji, S.; Hamachi, I. J. Am. Chem. Soc. 2011, 133, 12220. DOI: 10.1021/ja204422r (c) Hayashi, T.; Sun, Y.; Tamura, T.; Kuwata, K.; Song, Z.; Takaoka, Y.; Hamachi, I. J. Am. Chem. Soc. 2013, 135, 12252. DOI: 10.1021/ja4043214 (d) Hayashi, T.; Yasueda, Y.; Tamura, T.; Takaoka, Y.; Hamachi, I. J. Am. Chem. Soc. 2015, 137, 5372. DOI: 10.1021/jacs.5b02867 (d) Song, Z.; Takaoka, Y.; Kioi, Y.; Komatsu, K.; Tamura, T.; Miki, T.; Hamachi, I. Chem. Lett. 2015, 44, 333. doi:10.1246/cl.141065
  2. Heidler, P.; Link, A. Bioorg. Med. Chem. 2005, 13, 585. doi:10.1016/j.bmc.2004.10.045
  3. (a) Soumpasis, D. M. Biophys. J. 1983, 41, 95. (b) Sprague, B. L.; McNally, J. G. Trends Cell Biol. 2005, 15, 84. doi:10.1016/j.tcb.2004.12.001
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 1と2の中間のハナシ
  2. 窒素固定をめぐって-2
  3. 【書籍】10分間ミステリー
  4. 分子レベルでお互いを見分けるゲル
  5. 「高分子材料を進化させる表面・界面制御の基礎」
  6. 溶媒としてアルコールを検討しました(笑)
  7. 分子で作る惑星、その名もナノサターン!
  8. 「つける」と「はがす」の新技術|分子接合と表面制御 R3

注目情報

ピックアップ記事

  1. ロジウム(I)触媒を用いるアリールニトリルの炭素‐シアノ基選択的な切断とホウ素化反応
  2. 世界の化学企業ーグローバル企業21者の強みを探る
  3. ジャン=ルック・ブレダス Jean-Luc Bredas
  4. フェニル酢酸を基質とするC-H活性化型溝呂木-Heck反応
  5. 今年は国際周期表年!
  6. アダム・コーエン Adam E. Cohen
  7. 光刺激で超分子ポリマーのらせんを反転させる
  8. Heterocyclic Chemistry
  9. 強酸を用いた従来法を塗り替える!アルケンのヒドロアルコキシ化反応の開発
  10. 3.11 14:46 ②

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP