[スポンサーリンク]

化学者のつぶやき

生体組織を人工ラベル化する「AGOX Chemistry」

[スポンサーリンク]

京都大学・浜地格らは、有機触媒としてピリジニウムオキシム(PyOx)を用い、N-アシル-N-アルキルスルホンアミド(NASA)をアシルドナーとするアシル化型タンパク質修飾法の開発に成功した。試験管内での反応に加え、生細胞系に対しても修飾を行うことができ、選択性・安定性・効率も高い。

”Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems”
Tamura, T.; Song, Z.; Amaike, K.; Lee, S.; Yin, S.; Kiyonaka, S.; Hamachi, I.* J. Am. Chem. Soc. 2017, 139, 14181–14191. DOI: 10.1021/jacs.7b07339 (アイキャッチ画像は本論文より引用)

問題設定

生体内環境でのタンパク質の選択的ラベリングは、その構造・機能・挙動・集積を調べるのに有用なツールとなりうる。選択的ラベリング法としては、銅触媒によるアジド‐アルキン環化反応を始めとする様々な生体直交反応が知られている。
しかしながらこれら手法の多くは、

  • 遷移金属を用いるため毒性が高く、生細胞に適用しにくい
  • 遺伝子工学的手法で反応の足がかりとなる非天然構造を導入する必要があり、生体内機能に少なからず影響を及ぼす

などの問題があった。

技術や手法の肝

この問題に対し著者らは、タンパク質特異的なリガンドと有機触媒(DMAP)を組み合わせたリガンド結合部位近傍選択的なアシル化法、「affinity-guided DMAP(AGD) chemistry」を報告していた[1]。このケースではアシルドナーとしてはチオエステルを用いており、タンパク質にリガンド関与で結合したDMAPが求核攻撃を起こすと、活性アシルピリジニウム中間体が形成される。これによりリガンド近傍のLysでのみ反応が進行し、選択的なラベリングを行えるというコンセプトである。
ただこのAGD法にも以下の欠点が知られており、別の有機触媒/アシルドナーが必要とされていた。

  • DMAPの求核力を担保するために塩基性条件が必要(pH > 8)
  • チオエステルの反応性が高く、低温反応させないとバックグラウンドでの非選択的アシル化が進行してしまう。
  • チオエステルが生体条件で分解されてしまう

今回の論文で著者らは、ピリジニウムオキシム(PyOx)を有機触媒、N-アシル-N-アルキルスルホンアミド(NASA)をアシルドナーとした「affinity-guided oxime (AGOX) chemistry」を報告した。
PyOxは塩基性・求核性が高く、中性条件下で加水分解活性を示すことが知られている(pH7.2、37℃でp-nitrophenylacetateの加水分解速度を測定すると、PyOxはDMAPの9倍の活性を示した)。
一方NASAは既知のアシルドナーであり、アミドの一種でありながら求核攻撃を受けやすいため、ペプチド固相合成のC末端リンカーの接合部に用いられていた[2]。非天然構造のため酵素分解に安定であり、スルホニル部(R1)とアミド部(R2)の構造を調節可能である。また、チオエステルと比べると求電子性が低く、バックグラウンド反応も抑えられる。

このように、基本的なコンセプトはAGDと同様だが、いくつかの点で改善が見られている。

主張の有効性検証

PyOxに連結させるリガンドと、NASAアシルドナーの組み合わせを変えることで、様々なタンパク質修飾が可能になる。特に本論文において重要なクレームは

  1. リガンド-PyOx触媒を介した修飾のみが進み、バックグラウンド反応が起きない
  2. 中性・37℃で反応が進行する
  3. 生細胞系への応用可能性(細胞膜上のタンパク質を標的にできる)

の3点である。以下にこれを支持する実験結果を示す。

①FKBP12のビオチン修飾

FKBP12結合リガンド(SLF)とPyOxを連結させた分子(SLF-PyOx)を触媒として用い、Bt-NASAをビオチンドナーとして用い、タンパク質Lys残基のビオチン修飾を行なった。 NASA構造もいろいろ検討しているが、p-ニトロフェニル基を持つ図の構造が最も高い修飾効率を示した。リガンド近傍に位置する反応候補は二つ(Lys44, Lys52)あり、どちらも試薬を加えると定量的に変換されうる。

また、

  • PyOxがないと修飾は起きない
  • SLFに競合するFK506を入れると反応が起きなくなる
  • Bt-NASAはそのチオエステル版試薬より半減期が長い
  • チオエステル版試薬ではバックグラウンドでの反応が起きる

ことから、AGOX Chemistryに特徴的な反応性が示されている。

②生細胞表面における炭酸脱水素酵素(CAⅫ)のフルオレセイン修飾

膜に存在するタンパク質CAⅫを蛍光ラベルしている。ここではさらに触媒活性を上げるため、リガンド(SA)にPyOxを2分子備えたSA-diPyOxを用いている。

SA-diPyOxとフルオレセインラベル化試薬(FL-NASA)をpH7.2、37℃で細胞にかけると反応が進み、3時間で48%のCAが蛍光ラベル化されることがSDS-PAGEモニタリングによって明らかとなった。対照実験としてSA-triDMAPを用いるAGD chemistryでもラベル化を試みているが、非特異的なラベル化がかなり進行してしまう。なお、リガンド-CAII結合阻害剤(EZA)を加えると、やはり修飾は起きなくなる。

 膜表面のタンパク質が蛍光標識されることを利用し、レーザー光退色実験によりその拡散速度[3]も調べている。こちらはGFP融合タンパクで調べた値と一致している。

③マウス脳組織でのAMPARのフルオレセイン修飾

マウスの脳切片を用意し、神経細胞膜に含まれるα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)型グルタミン酸レセプター(AMPAR)を修飾している。リガンドにはPFQXを用いている。
これに関してもAGD系(PFQX-triDMAP)とAGOX系(PFQX-diPyOx)を比較しており、SDS-PAGEでの分析からAGOX系でのみ標識が達成されることを確認している。

議論すべき点

  •  以前の報告と比べると選択性がかなり改善されており、生細胞系にも適合性が高いことを示せている。使用可能なリガンド・アシルドナーの種類も多く、抗体の部位特異的修飾などにもそのまま転用できそうである。
  •  次なる課題は生細胞「内」化学反応への適用だろう。現在未達であることについては著者も言及している。PyOxのピリジン部のカチオン性が細胞膜透過性を著しく下げていることが原因のようだ。

参考文献

  1. (a) Koshi, Y.; Nakata, E.; Miyagawa, M.; Tsukiji, S.; Ogawa, T.; Hamachi, I. J. Am. Chem. Soc. 2008, 130, 245. DOI: 10.1021/ja075684q (b) Wang, H-x.; Koshi, Y.; Minato, D.; Nonaka, H.; Kiyonaka, S.; Mori, Y.; Tsukiji, S.; Hamachi, I. J. Am. Chem. Soc. 2011, 133, 12220. DOI: 10.1021/ja204422r (c) Hayashi, T.; Sun, Y.; Tamura, T.; Kuwata, K.; Song, Z.; Takaoka, Y.; Hamachi, I. J. Am. Chem. Soc. 2013, 135, 12252. DOI: 10.1021/ja4043214 (d) Hayashi, T.; Yasueda, Y.; Tamura, T.; Takaoka, Y.; Hamachi, I. J. Am. Chem. Soc. 2015, 137, 5372. DOI: 10.1021/jacs.5b02867 (d) Song, Z.; Takaoka, Y.; Kioi, Y.; Komatsu, K.; Tamura, T.; Miki, T.; Hamachi, I. Chem. Lett. 2015, 44, 333. doi:10.1246/cl.141065
  2. Heidler, P.; Link, A. Bioorg. Med. Chem. 2005, 13, 585. doi:10.1016/j.bmc.2004.10.045
  3. (a) Soumpasis, D. M. Biophys. J. 1983, 41, 95. (b) Sprague, B. L.; McNally, J. G. Trends Cell Biol. 2005, 15, 84. doi:10.1016/j.tcb.2004.12.001
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・I…
  2. Google Scholarにプロフィールを登録しよう!
  3. 複数のイオン電流を示す人工イオンチャネルの開発
  4. 機能を持たせた紙製チップで化学テロに備える ―簡単な操作でサリン…
  5. 早稲田大学各務記念材料技術研究所「材研オープンセミナー」
  6. セミナー/講義資料で最先端化学を学ぼう!【有機合成系・2016版…
  7. メタンガスと空気からメタノールを合成する
  8. 留学生がおすすめする「大学院生と考える日本のアカデミアの将来20…

注目情報

ピックアップ記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」⑤(解答編)
  2. プロセス化学ー合成化学の限界に挑戦するー
  3. 有機合成化学協会誌2022年5月号:特集号 金属錯体が拓く有機合成
  4. NMR が、2016年度グッドデザイン賞を受賞
  5. リガンド結合部位近傍のリジン側鎖をアジド基に置換する
  6. カレーの成分、アルツハイマー病に効く可能性=米研究
  7. 電子一つで結合!炭素の新たな結合を実現
  8. 単結合を極める
  9. 【ケムステSlackに訊いてみた②】化学者に数学は必要なのか?
  10. 有機合成化学協会誌2021年4月号:共有結合・ゲル化剤・Hoveyda-Grubbs型錯体・糸状菌ジテルペノイドピロン・Teleocidin B

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー