嵩高いコバルト錯体を触媒として用いた位置選択的Simmons–Smith型モノシクロプロパン化反応が報告された。還元剤として用いる亜鉛が触媒と相互作用することにより反応が効率的に進行する。
Simmons–Smithシクロプロパン合成
シクロプロパンは、合成品や天然物の生物活性物質において数多く見られる骨格である。これらシクロプロパン合成で最も使用される手法の一つが、アルケンのシクロプロパン化反応である。
アルケンからシクロプロパンへの変換反応は形式的なメチレンの付加反応と見なすことができ、カルベンや金属カルベノイド種を用いる手法が一般的である。
Simmons–Smithシクロプロパン化は、亜鉛およびヨウ化メチレンから生成する亜鉛カルベノイドが容易に調製可能かつ安定であることから最も利用されている手法である。立体特異的に進行するため、生成物の立体化学の予測・制御が可能であることも本手法の利点である。金属亜鉛を用いるSmithらの初期条件から研究が重ねられ、簡便かつ定量性に優れるEt2Znを用いる手法をはじめ、トリフルオロ酢酸やリン酸を加える反応条件などいくつかの改良法が報告されてきた(図1A)[1]。しかしながら、複数のアルケンをもつ化合物に対する位置選択性では課題が残る。アリルアルコール類など配向基を用いて制御した例[2]はあるものの、類似の電子的性質のアルケンを複数もつ化合物に対して位置選択的にモノシクロプロパン化を達成した例はこれまで報告がない。
今回、Purdue大学のUyeda助教授らは、ピリジン-ジイミン(PDI)とコバルトにより形成される錯体[i-PrPDI]CoBr2触媒[3]と臭化メチレンおよび金属亜鉛をシクロプロパン化剤として用いることで位置選択的なモノシクロプロパン化反応の開発に成功したので紹介する(図1B)。配位子の嵩高さを利用することで立体障害の小さいアルケン部位で選択的に反応が進行する。
“Regioselective Simmons–Smith-type cyclopropanations of polyalkenes enabled by transition metal catalysis”
Werth J.; Uyeda, C. Chem. Sci. 2018. Advance Article DOI: 10.1039/c7sc04861k
論文著者の紹介
研究者:Chrispher Uyeda
2005 B.S., Columbia University (Prof. R. Breslow)
2011 Ph.D., Harvard University (Prof. E. N. Jacobsen)
2011-2013 Posdoc, California Institute of Technology (Prof. J. C. Peters)
2014- Purdue University, Assistant Professor
研究内容:金属–金属結合を活用した触媒的有機合成
論文の概要
著者らは、以前独自に設計したニッケル二核錯体 [[i-PrNDI]Ni2(C6H6) (NDI: ナフチリジン-ジイミン) を触媒とすることで、塩化メチレンと金属亜鉛を用いるアルケンのSimmons–Smith型シクロプロパン化が効率的に進行することを報告している[4]。
本論文では単核錯体である[i-PrPDI]CoBr2触媒存在下、アルケン1に対して臭化メチレンおよび亜鉛をTHF溶媒中22 °Cで反応させることで位置選択的にモノシクロプロパン化が進行し2を得ることに成功した(図2A)。本反応は立体障害の影響が少ないアルケンに対して選択的にシクロプロパン化が進行する。水酸基(2e)やエーテル(2f)などの配向性官能基や、a,b-不飽和カルボニル(2i)やボロン酸エステル(2j)をもつ基質でも、それらの影響を受けることなく位置選択性が発現する。また、1,3-ジエンに対しても末端部位でのみ選択的に反応が進行する。
ラジカルクロック実験などから、本反応は[2+1]の協奏的機構で進行していることが示唆されている。また、亜鉛は還元剤として作用するだけではなくコバルト錯体と相互作用しながらCo/Zn錯体を形成し、カルベノイド中間体の反応性を向上させていることが化学量論量実験および単結晶X線結晶構造解析の結果から推察されている(図2B)。
三置換/四置換アルケンに本反応が適用できないことは課題として残るものの、複数のアルケンを有する基質に対する位置選択的モノシクロプロパン化反応が達成された。今後、創薬化学等の分野への寄与が期待される。
参考文献
- (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323. DOI: 10.1021/ja01552a080 (b) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1966, 28, 3353. DOI: 10.1016/S0040-4039(01)82791-X (c) Yang, Z.; Lorenz, J. C.; Shi, Y. Tetrahedron Lett. 1998, 39, 8621. DOI: 10.1016/S0040-4039(98)01954-6 (d) Voituriez, A.; Zimmer, L. E.; Charette, A. B. J. Org. Chem. 2010, 75, 1244. DOI: 10.1021/jo902618e
- Reviews for stereoselective cyclopropanations, see: (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem, Rev. 1993, 93, 1307. DOI: 10.1021/cr00020a002 (b) Lebel, H.; Marcoux, J. F..; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977. DOI: 10.1021/cr010007e
- Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 4049. DOI: 10.1021/ja9802100
- Zhou, Y-. Y.; Uyeda, C. Angew. Chem., Int. Ed. 2016, 55, 3171. DOI: 10.1002/anie.201511271