[スポンサーリンク]

化学者のつぶやき

ルテニウム触媒によるC-C結合活性化を介した水素移動付加環化型カップリング

[スポンサーリンク]

2017年、テキサス大学オースティン校・Micharl J. Krischeらは、Ru(0)触媒によるベンゾブテノンとジオールの水素移動型付加環化反応の開発に成功した。位置・立体選択的に進行する本反応は、type II ポリケタイドの収束的合成の効率化に寄与できると考えられる。

“Ruthenium-catalyzed insertion of adjacent diol carbon atoms into C-C bonds:Entry to type II polyketides”
Bender, M.; Turnbull, B. W. H.; Ambler, B. R.; Krische, M. J.* Science 2017, 357, 779-781. DOI: 10.1126/science.aao0453


先行研究と比較して優れている点

歪みを持つ炭素環に対するC-C結合活性化反応の研究は古くから行われており、また生じたメタラサイクルとπ結合との反応は、Pt やNi、Rh、Ru を用いた反応などが知られる。これらが有機合成分野を開拓してきた一方、飽和C-H 結合がσ(C-C)結合に挿入する反応は前例がない。
今回の報告では、水素移動型C-Cカップリング概念[1] を用いることでそのような反応形式を達成している。また得られる橋頭位ジオールを持つ縮環化合物は、type IIポリケタイド合成における有用なビルディングブロックになることが期待できる。

技術や手法の肝

Krischeのグループでは、Ru3(CO)12 触媒によるα-ヒドロキシエステルや1,2-ジオールの酸化がオレフィンやアルキンを水素アクセプターとすることで促進され、[4+2]形式の環化反応など、様々な形式の反応を進行させることを見出していた[2]。例えば下図の反応[2b]では、ジオールがRu(0)により酸化されジオンとなり、その後オキサルテナサイクルを形成し、ジエンーカルボニルの酸化的カップリングが進行している。

この系を基盤に、基質としてベンゾシクロブテノンを用いた反応を行なっている。この場合には、ルテニウムがC-C結合活性化を介しながら同様のカップリングを進行させ、6 員環形成反応を進行させる。

主張の有効性の検証

①反応条件の最適化

下記の基質およびトルエン溶媒を用いて初期検討を行い、Ru3(CO)12 (2 mol%), dppp (6 mol%)存在下110 °C で24 h反応させたところ所望の環化体が22%収率で得られた。ジオール部の立体配置はsyn体のみが得られる。最適化の結果、キシレン溶媒中で150 °C にて24h 反応させることで88%収率まで向上した。

②基質一般性の検討

ベンゾシクロブテノン基質側は、アルコキシ基やハロゲンを持つものに限られるものの、ハロゲン化体からはカップリング反応により様々な基質の合成に応用することが期待できる。
ジオール基質側に関しては、5 ~7 員環の飽和炭素環や、隣接位にgem-ジメチル基を持つものでも反応が進行した。さらにα位に不斉炭素をもつ基質についても不斉が損なわれることなく反応が進行し、いずれの基質においても位置・立体選択的に反応が進行した。


③反応機構の考察

通常条件では、シクロブテノン原料の開環した(2-methoxy-6-methylphenyl)methanolが合わせて得られており、2当量の水素を受け取ってジオールを酸化していることが示唆される。一方でケトールを原料として用いたときはredox-neutral系となるため、ベンゾシクロブテノンに対しケトールは1当量で反応が進行する。ジケトンを原料として用いたときは還元剤としてiPrOH を加えることで反応が進行する[3]。

推定反応機構は、以下のとおりである。まず、原料同士が反応することで、ジケトン基質が生じる。ベンゾシクロブテノンの歪C-C結合がルテニウムに酸化的付加し、ルテナインダノンを形成する。その後、ジケトンへの連続付加によりジオキサルテナサイクルを得る。その後、原料によって水素が供給され、ルテニウムヒドリドからの還元的脱離により目的物が生成するとともに、Ru(0)が再生する。

④不斉反応への展開性

上記のスタンダードな基質組み合わせで(CF3CO2)2Ru(CO)(PPh3)2・MeOH錯体と不斉配位子(R)-SEGPHOS共存下に反応を行ったところ、51%eeで光学活性な目的物が得られた。現状この一例だけに報告は限定されている。

次に読むべき論文は?

  • Ru を用いたC-C結合活性化、引き続くエナンチオ選択的反応の論文。開拓度が低く、先例自体あまりなさそうだが。

参考文献

  1. Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krishe, M. J. Angew. Chem. Int. Ed. 2014, 53, 9142. DOI: 10.1002/anie.201403873
  2. For example: (a) Leung, J. C.; Geary, L. M.; Chen, T.-Y.; Zbieg, J. R.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 15700. DOI: 10.1021/ja3075049 (b) Geary, L. M.; Glasspoole, B. W.; Kim, M. M.; Krische, M. J. J. Am. Chem. Soc. 2013, 135, 3796. DOI: 10.1021/ja400691t
  3. Johnson, T. C.; Totty, W. G.; Wills, M. Org. Lett. 2012, 14, 5230. DOI: 10.1021/ol302354z
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 三核ホウ素触媒の創製からクリーンなアミド合成を実現
  2. ぼっち学会参加の極意
  3. 「海外PIとして引率する大気化学研究室」ーカリフォルニア大学アー…
  4. ユシロ化学工業ってどんな会社?
  5. 有機合成化学協会誌2020年6月号:Chaxine 類・前周期遷…
  6. Q&A型ウェビナー カーボンニュートラル実現のためのマ…
  7. ケムステイブニングミキサー2019に参加しよう!
  8. 分子の聖杯カリックスアレーンが生命へとつながる

注目情報

ピックアップ記事

  1. 共有結合性有機構造体(COF)の新規合成・薄膜化手法を開発
  2. CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」
  3. 第16回 結晶から結晶への化学変換 – Miguel Garcia-Garibay
  4. 転位のアスレチック!(–)-Retigeranic acid Aの全合成
  5. ペンタフルベンが環構築の立役者!Bipolarolide D の全合成
  6. C&EN コラム記事 ~Bench & Cubicle~
  7. 産総研、バイオから環境まで応用可能な新しい質量分析技術の開発に成功
  8. 金属アルコキシドに新たなファミリー!Naでも切れない絆
  9. 分子間相互作用の協同効果を利用した低対称分子集合体の創出
  10. ポンコツ博士の海外奮闘録XXIV ~博士の危険地帯サバイバル 筒音編~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー