[スポンサーリンク]

化学者のつぶやき

システインの位置選択的修飾を実現する「π-クランプ法」

[スポンサーリンク]

2016年、マサチューセッツ工科大学・Bradley L. Penteluteらは、ペプチドやタンパク質にπ-クランプ配列 (Phe-Cys-Pro-Phe) を導入することにより、当該配列内のシステイン残基のみを選択的に修飾できる方法論の開発に成功した。

“π-Clamp-mediated cysteine conjugation”
Zhang, C.; Welborn, M.; Zhu, T.; Yang, N. J.; Santos, M. S.; Voorhis, T. V.; Pentelute, B. L.* Nat. Chem. 2016, 8, 120–128. doi:10.1038/nchem.2413

問題設定

従来のタンパク質の位置選択的修飾は他官能基との反応性が低い反応剤や,特定位置での反応を促進させる触媒を用いて達成されていた。
また、システイン(Cys)残基選択的修飾では、マレイミドによるライゲーションもしくはアルキル化が用いられてきたが,これらは位置選択的修飾ができないために利用は限られていた。
タンパク質はその三次元構造により特定の反応や相互作用を制御している事実に照らし合わせれば、特定配列が本反応を加速しうるのではないかとの着想を得て、新たに本手法が見出された。

技術や手法のキモ

著者らはパーフルオロアリール基とCysとの芳香族求核置換反応が、有機溶媒中では進行する一方で水中では反応速度が極めて遅いことを見出していた[1]。
そこで、Xaa-Cys-Xaa-Xaa-Gly-Leu-Leu-Lys配列(Xaaは任意アミノ酸)のペプチドライブラリーに、ビオチン-パーフルオロアリールプローブ(TEVプロテアーゼで切断可能な配列を組み込んである)を投入し,ストレプトアビジンを用いるpull-down法を適用したところ、Phe-Cys-Pro-Trp配列含有ペプチドが優先的に反応していることが同定された。

さらに9残基からなるペプチド (Xaa-Cys-Pro-Xaa-Gly-Leu-Leu-Lys-Asn-Lys) を基質として反応の検討を行ったところ、XaaがともにPheの場合は定量的な収率が得られるのに対し,Xaaのどちらか一方でもPheからGlyとなった場合や、ProがD-Proとなった場合には収率の大きな低下が見られた。
このようにして最終的にπ-クランプ (Phe-Cys-Pro-Phe)と呼ばれる特殊配列を見いだすことに成功している。

主張の有効性検証

Cys残基を複数含むペプチド・タンパク質において、π-クランプ配列に含まれるCys残基のみを選択的にパーフルオロアリール化できることを以下の実験で示している。

①競合実験

π-クランプを含むペプチドと、π-クランプの一部がGlyに変異したペプチドが競合的に存在する条件下で反応を行ったところ、π-クランプを含むペプチドのみが選択的に、かつ定量的に反応が進行した。

②ペプチドにおける選択性確認実験

N末にCys, C末にπ-クランプを持ち,その間をTEVプロテアーゼによって切断することのできるモデルタンパク質を用いて検討を行った.この結果、π-クランプのCysのみが高い位置選択性で修飾されていることが確認された。

③各種タンパク質への適用

N末にπ-クランプを導入したSortase Aに対し本反応を適用した。Cysを複数含んでいるものの、π-クランプの一か所のみが修飾されていること、また酵素活性が低下しないことが示されている。
また、抗体に対しても応用し、抗体―薬物複合体(ADC)の製造へも応用している。Cysを標的とした位置特異的修飾は既存条件では不可能で有り、ADCは不均質混合物として供給されていた。
著者らはトラスツズマブやセツキシマブにπ-クランプを導入したうえで本反応を行い、π-クランプを含む抗体の選択的な修飾に成功している。また修飾後の抗体は抗原親和性が大きく変化せず、抗原を発現した細胞に対しても結合活性を保っている。

④π-クランプの構造化学・反応機構の示唆

分子動力学計算(MD) を用いたペプチドのコンフォメーション解析や、密度汎関数法 (DFT)による反応エネルギー解析が行われている。これによると、下図の4つ (Clamp, Half-Clamp, Phe-Phe face on, Open) が、π-クランプ配列が取り得る主要な配座となっている。

冒頭論文より引用

このうちClamp構造を取っている場合には,アリール化生成物のエネルギーや遷移状態のエネルギーが特に低くなり有利になる。これはPheの芳香環側鎖がパーフルオロアリール基を認識し、またCysの硫黄原子を活性化するためだと推測されている。また本解析により、π-クランプ配列4番目のPheがアリール化を行うに当たって特に重要であることが見出されている。

冒頭論文より引用

議論すべき点

  • π-クランプの位置がペプチドのアミノ酸配列のC末,N末,中間いずれにおいても非常に良好な収率で得られる。タンパク質の活性中心を避けてπ-クランプ配列を導入することで任意の位置が修飾可能なため、応用の幅は広い。
  • タンパク質が変性せず機能する条件(温度,pHなど)に制約があるように、π-クランプが有効に働く条件の制約はあるか?

次に読むべき論文は?

π-クランプ法の詳細な機構解析を行っている続報が、Pentelute自身らによって報告されている[2]。
π-クランプのProがtrans配座を取ることがパーフルオロアリール基捕捉機能に重要であることや,生成物においてPhe側鎖がパーフルオロアリール基と相互作用していることなどが述べられている。
これらの研究からπ-クランプ配列の変異体である下記ペプチドにおいては、85倍の反応加速効果があることが見いだされている。α-Me-Proによるtrans配座固定と,pyrenyl基とのπ-π相互作用が重要とされる。

参考文献

  1. Spokoyny, A. M.; Zou, Y.; Ling, J. J.; Yu, H.; Lin, Y.-S.; Pentelute, B. L. J. Am. Chem. Soc. 2013, 135, 5946. DOI: 10.1021/ja400119t
  2. Dai, P.; Williams, J. K.; Zhang, C.; Welborn, M.; Shepherd, J. J.; Zhu, T.; Voorhis, T. V.; Hong, M.; Pentelute, B. L. Sci. Rep. 2017, 7, 7954. doi:10.1038/s41598-017-08402-2
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方と…
  2. ワンチップ顕微鏡AminoMEを買ってみました
  3. 新たなクリックケミストリーを拓く”SuFEx反応&#…
  4. 茨城の女子高生が快挙!
  5. 創発型研究のススメー日本化学会「化学と工業:論説」より
  6. 鉄錯体による触媒的窒素固定のおはなし-2
  7. アルミに関する一騒動 ~約20年前の出来事~
  8. イミデートラジカルを用いた多置換アミノアルコール合成

注目情報

ピックアップ記事

  1. 第30回光学活性化合物シンポジウムに参加してみた
  2. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前に分からなかった問題を解決 −
  3. ウイルスーChemical Times 特集より
  4. 熱活性化遅延蛍光 Thermally Activated Delayed Fluorescence (TADF)
  5. テトラサイクリン類の全合成
  6. 超若手科学者の発表会、サイエンス・インカレの優秀者インタビュー
  7. 東レ、ナノ構造制御技術を駆使した半導体実装用接着シートを開発
  8. ベンジル保護基 Benzyl (Bn) Protective Group
  9. DNAのもとは隕石とともに
  10. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体模倣反応・色素・開殻π造形

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー