[スポンサーリンク]

一般的な話題

今年はキログラムに注目だ!

[スポンサーリンク]

遅ればせながら明けましておめでとうございます。本年も面白い化学について少しでもお伝えできればと思いますので、よろしくお願い申し上げます。

という訳で、昨年末あたりは2018年が化学に関するなんらかのアニバーサリーイヤーになっていないかをボチボチと調べていました。が、残念ながらなかなかいいのが見当たらず、イカになってインクをそこら中にばらまくことに惚けてしまいました。

過去には適当なネタがないということで、今年予定されている化学に関する重大なイベントについて、先走って紹介してしまいたいと思います。

キログラムと言っても、年末年始の暴飲暴食でお腹周りのキログラムが増えた程度の関わりかと思います。

さて、アボガドロ定数はどうやって決まっているんでしたっけ?0.012 kgの12Cに含まれている原子の数でした。ここで重要になってくるのは、0.012 kgという質量を、どのように正確に決めるのかになります。物事を定義するには、その基準となるものが必ず必要となりますが、質量という「物理量」は、基準となる「分銅」を基にした定義を用いていました。

その分銅は国際キログラム原器(IPK)と呼ばれ、直径および高さが約39 mmの円柱形の白金90%、イリジウム10%の合金製で、フランスのセーヴルの国際度量衡局(BIPM)に、二重の気密容器を用いて真空中で保管されています。現在ではIPKの複製がいくつも作成されており、我が国には現時点で4つの原器があり、そのいずれもが産業総合研究所(以下産総研)に保管されています。

日本国キログラム原器(画像は産総研HPより)

40年を目処に、各国のキログラム原器は国際キログラム原器と比較することになっており、日本国キログラム原器は、国際キログラム原器より0.176 mg程重いことが分かっています。いくら真空で保管しているとはいえ、物質ですので、何らかの影響を受けて質量が増減することは容易に想像できます。事実、ほぼ全てのキログラム原器は1889年と比較すると相対的に重くなっているようです。数年前に国際キログラム原器の洗浄が行われ、洗浄前に比べて50 ug程度軽くなったと言われていますが、「原器」なので、それがまた基準となります。

さて、このように現在でも質量という、最も馴染みのある物理量だけが普遍的ではありません。しかし、今年から来年にかけてこれが普遍的なものに変わろうとしています。そのためにはプランク定数(h)を正確に定義すればよいのです。難しいところは省きますが、相対論と光電効果の式より、

E = mc2 = hνであり、これを変形すると

ν = mc2/h となります。ここで、mは物体の静止質量、cは光速度(定数)、νは光子の周波数であり、mを1 kgとして、「プランク定数を定義」すれば、キログラムとは、周波数が[(299792458)2/6.626XXX]×1034 Hzの光子のエネルギーに等価な質量と定義することが可能になります(ここでXXXの部分はまだ正確に決まっていない部分)。

では、このプランク定数を正確に決めるにはどうすればいいのでしょうか?いくつか方法が考案されていますが、その中にアボガドロ定数(NA)を用いる方法があります。プランク定数とアボガドロ定数は

NAh = cAr(e)Mua2/2R (Ar(e): 電子の相対原子質量, Mu: モル質量定数, a: 微細構造定数, R: リュードベリ定数)

という式で結び付けられていますので、そのどちらかが求められれば、もう一方も決まることになるのです。

なんだか循環論法みたいですが、まとめると、アボガドロ定数を正確に求めるプランク定数が決まるキログラムが決まるという流れです。

アボガドロ定数を正確に求める試みは、世界中で活発に行われてきましたが、アボガドロ国際プロジェクトに参画している産総研より、昨年素晴らしい成果が報告されました[1]。彼らはまず99.99%まで同位体の純度を高めた28Siの単結晶を5 kg作成し、そこから1 kgの真球を削り出しました。そしてX線干渉計を用いて結晶の格子定数を決定し、さらにレーザー干渉計を用いて体積を精密に測定することで、アボガドロ定数を

6.02214084(15)×1023

と高精度で求めています(括弧内の数字は最後の桁の標準不確かさを表す)。

産総研が開発したX線光電子分光法システム(左)、分光エリプソメーター(右)(画像は産総研HPより)

球体のシリコンが美しく光ってますね

この値は、その他のグループの測定結果(他の測定方法を含む)ともよく一致しています。なお最近になって、過去の測定値を基にさらに

6.022140588(65)×1023

と高精度で求めています[2]。これらの結果を含む8つの測定値に基づいて、科学技術データ委員会(CODATA)はプランク定数の調整値として

6.626070150(69)×10-34 (Js)

を決定しています。その精度は1.0×10-8にもなります。これは1 kgに換算すると10 ugということになるので、現行のキログラム原器の安定性が50 ugほどであることを考えると大きな進歩であると言えます。

そして今年11月に開催予定の第26回国際度量衡総会(CGPM)において、このプランク定数の不確かさをゼロとし、プランク定数をその名の通り定義値とするかどうかが審議される予定です。ここでプランク定数が決定することで、キログラムという単位が普遍的な物理量となるのです。

さて、今年は化学において、いや科学全般に大きく波及するであろうキログラムの定義の変更という歴史的な年になるかもですね。ちなみに定義の施行は来年の5月20日、世界計量記念日になるかもです。

国際単位系(SI)の基本となる単位の決定に我が国が直接関与するのは初めてとのことですので、それはそれで嬉しい気がします。これからはキログラム推しでいきたいと思います(?)。

参考文献

  1. Kuramoto, N.; Mizushima, S.; Zhang, L.; Fujita, K.; Azuma, Y.; Kurokawa, A.; Okubo, S.; Inaba, H.; Fujii, K. Metrologia 54, 716 (2017). DOI: 10.1088/1681-7575/aa77d1

  2. Fujii, K.; Massa, E.; Bettin, H.; Kuramoto, N.; Mana, G. Metrologia 55, L1 (2018). DOI: 10.1088/1681-7575/aa77d1

参考サイト

関連書籍

[amazonjs asin=”4408109754″ locale=”JP” title=”意外と知らない? 身近にあるサイエンス! 学校で習った「法則」・「定理」ほんとうの使い道 (じっぴコンパクト新書)”] [amazonjs asin=”4815000476″ locale=”JP” title=”増訂版 単位は語る 〜 科学と教育 (MyISBN – デザインエッグ社)”]
Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. 2010年イグノーベル賞決定!
  2. 多孔質ガス貯蔵のジレンマを打ち破った MOF –質量でもよし、体…
  3. ホウ素でがんをやっつける!
  4. リガンドによりCO2を選択的に導入する
  5. クロスカップリング反応ーChemical Times特集より
  6. 科学雑誌 Newton 2019年6月号は化学特集!
  7. 【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オ…
  8. メタンガスと空気からメタノールを合成する

注目情報

ピックアップ記事

  1. アレノフィルを用いるアレーンオキシドとオキセピンの合成
  2. 反応中間体の追跡から新反応をみつける
  3. Tattooと化学物質のはなし
  4. エナンチオ選択的Heck反応で三級アルキルフルオリドを合成する
  5. メタンガスと空気からメタノールを合成する
  6. 第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授
  7. 「脱芳香族的二重官能基修飾化反応の研究」ーイリノイ大学David Sarlah研より
  8. 光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分光測定手法を開発
  9. 化学工場で膀胱がん、20人に…労災認定議論へ
  10. 室温以上で金属化する高伝導オリゴマー型有機伝導体を開発 ―電子機能性を制御する新コンセプトによる有機電子デバイス開発の技術革新に期待―

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー