[スポンサーリンク]

スポットライトリサーチ

プラスチックに数層の分子配向膜を形成する手法の開発

[スポンサーリンク]

第135回のスポットライトリサーチは、東京大学大学院 工学研究科(染谷 隆夫 教授)の横田 知之 講師を紹介します。
染谷研究室は、有機エレクトロニクスの分野で世界的に大変著名な研究室です。中でもフレキシブル有機デバイスの開発に精力的に取り組まれており、それらのデバイスや合成技術を医療やヘルスケアの分野へ応用させることにも着手されています。

染谷研究室ではこれまで、アルミ酸化膜と自己組織化単分子膜(SAM)を用いることによって低電圧駆動可能な有機トランジスタや集積回路などが開発されてきました。一方でアルミ酸化膜はプラスチックなどのポリマー材料と比べて硬く、柔軟性に欠けるという問題がありました。今回横田講師らは、東京工業大学(福島 孝典 教授)大阪大学 産業科学研究所(関谷 毅 教授)、理化学研究所、ヨハネスケプラー大学の研究グループらと共同して研究を行うことで、ポリマー材料を含む多種多様な基板上で分子膜を形成させる手法の開発に成功しました。

Tomoyuki Yokota*, Takashi Kajitani, Ren Shidachi, Takeyoshi Tokuhara, Martin Kaltenbrunner, Yoshiaki Shoji, Fumitaka Ishiwari, Tsuyoshi Sekitani, Takanori Fukushima*, Takao Someya*

”A Few-Layer Molecular Film on Polymer Substrates to Enhance the Performance of Organic Devices”

Nature Nanotechnology, 2017   doi:10.1038/s41565-017-0018-6

本研究はプレスリリースとしても発表されています。

染谷教授から横田講師に対するメッセージをいただきました。

いつも物静かで、にこやかで、落ち着いて、そして謙虚であるため、初めて会って少し話したくらいでは、横田さんが大いなる闘志を内に秘めた研究者であることに気が付く人はほとんどいません。極薄の有機ELを使ったスキンディスプレイや世界最高感度のフレキシブル体温計など世界が驚く成果を連発するアイディアや集中力は一体どこから来るのでしょうか。どんな困難に直面してもへこたれないのは、きっと人よりも一段高いところを見ているからだと思います。横田さんと共同研究ができて、私は本当に幸せ者です。

染谷 隆夫

ぜひ原著論文と合わせて、インタビューをお楽しみください。

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?

本研究では、プラスチックの上に数層の分子配向膜を実現し、有機デバイスの特性を向上させることに成功しました

従来の技術では、金属酸化膜や金属上には自己組織的に単分子が配向する自己組織化単分子膜(SAM)を用いることで配向膜を形成することができました。しかしながら、プラスチック上にはSAMを形成することが困難でした。我々はこの問題を解決するために、3枚羽プロペラ状の分子であるトリプチセン(*)を用いることで、フィルム基板上に二次元に配向した膜を形成することに成功しました。このような配向膜上に有機半導体を形成することで、有機半導体の結晶性を向上させることができ、デバイスの特性を向上させることに成功しました。

*このトリプチセン誘導体についてはケムステ過去紹介記事(センチメートルサイズで均一の有機分子薄膜をつくる!”シンプル イズ ザ ベスト”の極意)ならびに原著論文をご参照ください。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究では、トリプチセン材料用いることで下記を実現することができました。 

①様々な基板上への表面修飾技術の確立

蒸着法、塗布法のいずれでも成膜可能なため、様々な基板上に成膜することが可能です。

②基板の特性に依らずに表面状態を制御可能

酸化膜、フィルム基板の種類に依らず、トリプチセン膜を成膜することで表面の特性を制御することができました。

③有機集積回路の特性向上

トリプチセンをポリマー絶縁膜上に成膜することで、有機デバイスをわずか0.8 Vで駆動させることに成功しました。この時の動作速度は、従来のアルミ酸化膜とSAMを用いたデバイスとほぼ同等でした。 

このように、今回の研究は今後の有機エレクトロニクスの発展に大きな貢献をすることができると期待しております。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回の研究では、デバイスの特性や表面状態を丁寧に評価することが特に難しかったです。

もともと物性に関する研究が好きだったのですが、学生時代は有機デバイスを用いた応用に関する研究をメインに行ってきました。そのためこれまでの研究とは違い、根気強く研究を行う必要がありました。また測定したデータをどのように解釈するかを考えるのに多くの時間を使いました。自分の性格である忍耐強さでこの点は、何とか乗り切ることができました。

Q4. 将来は化学とどう関わっていきたいですか?

現在は電気系工学専攻に所属していますが、もともと高校時代は数学と化学が一番好きでした。応用と物性の両方を研究していることが自分の強みですので、他の研究者にはできないような研究をしていきたいと思います。応用の点から材料開発などができればと思います。また、いつかは数学もそこに絡めることができたら幸せです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究ではすぐには結果が出ないことも多いと思いますが、あきらめずにいればいつか花開くことがあると思います。実際に、私の研究はプロジェクトを開始してから3年くらいで花開くことがほとんどです。成果が2年くらい出ないこともよくありました。それでも安易に逃げの研究を行うのではなく、自分の独創性を発揮するような攻めの研究を是非行ってください。若い時に失敗からいろいろ学ぶことをお勧めします。

研究者の略歴

手にフレキシブルな有機発光素子(OLED)を貼っている様子

名前:横田 知之(よこた ともゆき)

博士(工学)、東京大学講師

1985年4月、栃木県生まれ。東京大学卒業(2008年3月)。東京大学博士後期課程修了(2013年3月)。東京大学特任助教(2013年4月–2015年3月)を経て2015年4月より現職。フレキシブルエレクトロニクスのデバイス応用と物性の両面からの研究に従事している。趣味は数学とランニング。

Avatar photo

めぐ

投稿者の記事一覧

博士(理学)。大学教員。娘の育児に奮闘しつつも、分子の世界に思いを馳せる日々。

関連記事

  1. 魅惑の薫り、漂う香り、つんざく臭い
  2. 放線菌が生産するアベナルミ酸生合成において、ジアゾ化とヒドリド転…
  3. シンポジウム・向山先生の思い出を語る会
  4. オルガネラ選択的な薬物送達法:①細胞膜・核・ミトコンドリアへの送…
  5. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  6. 元素の和名わかりますか?
  7. プロトン共役電子移動を用いた半導体キャリア密度の精密制御
  8. 薬剤師国家試験にチャレンジ!【有機化学編その1】

注目情報

ピックアップ記事

  1. ケムステニュース 化学企業のグローバル・トップ50が発表【2019年版】
  2. 抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発
  3. 材料研究分野で挑戦、“ゆりかごから墓場まで”データフル活用の効果
  4. ナノチューブ団子のときほぐしかた [テキサスMRD社の成果]
  5. アルミに関する一騒動 ~約20年前の出来事~
  6. 光学分割 / optical resolution
  7. 徹底比較 特許と論文の違い ~その他編~
  8. 有機反応を俯瞰する ーヘテロ環合成: C—C 結合で切る
  9. 上田 実 Minoru Ueda
  10. 分子構造を 3D で観察しよう (3):新しい見せ方

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP