[スポンサーリンク]

化学者のつぶやき

光触媒を用いたC末端選択的な脱炭酸型bioconjugation

[スポンサーリンク]

光触媒を用いた反応開発で世界をリードしているMacMillan先生が今度はケミカルバイオロジー分野に参入か!?

Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials

Bloom, S.; Liu, C.; Kölmel, D.; Qiao, J.; Zhang, Y.; Poss, M.; Ewing, W.; MacMillan, D.

Nat. Chem. DOI: 10.1038/NCHEM.2888

反応開発の人が比較的取り組みやすい(と個人的に思っている)bioconjugationに自身の反応を応用しています。

bioconjugationとはなんぞや?と思われる方、大丈夫です、ケムステコンテンツはちゃんとそこまでフォローしてますよ!ということで詳細はこちらに説明を託して早速本文の紹介に進みたいと思います。

Bioconjugationに必要な条件とは

bioconjugationはペプチド/タンパク質を基質として用いる系なので、

  1. 反応は水系で行わなければならない。
  2. 一般的にタンパク質溶液は高濃度には調整できない(溶解しない)ため、低濃度でも反応が進行する必要がある。
  3. 温和な条件が必要。(タンパク質の3次構造を壊したくない)
  4. 高い選択性が必要。(様々な官能基が共存しているので)

なかなか厳しい条件ですが、MacMillanの反応はこれらを満たしているということですね。

水中での反応性と官能基選択性

今回の報告で彼らは光触媒を用いて脱炭酸を伴ったラジカルを発生させ、官能基化を行っています。高い反応性を有するラジカル反応が水中でタンパク質修飾に有用であることはこれまでの報告でもあるので(ラジカル反応制御を基盤とするタンパク質修飾法の開発[1]「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾)、本反応系がbioconjugationに用いることのできるというのは納得できます。

ラジカル反応を利用したBioconjugation

 

続いて選択性です。今回の報告はC末選択的な脱炭酸型官能基化です。

タンパク質の中にはC末端以外にもアスパラギン酸やグルタミン酸といった側鎖にカルボン酸を有するものが存在しうるにも関わらず、本反応ではむしろマイナーであるC末端のカルボン酸が選択的に反応します。そのカラクリはラジカルの生成のしやすさです。C末端のカルボン酸は脱炭酸後に生成するラジカルは隣にヘテロ原子(窒素)が存在するため、アスパラギン酸やグルタミン酸の側鎖から生成するラジカル種より安定です。これがC末選択的に反応が進行する所以です。

反応の選択性:側鎖のカルボン酸 vs C末端のカルボン酸(出典: Fig. 1を改変)

光触媒の検討

さて、C末選択的に脱炭酸的な官能基化が進行しそうなことはわかりました。ということは、後は、MacMillanらがこれまで報告している反応条件で試せば終わり!と思うのですが、そうは問屋はおろしません。

本反応系で一般的に用いられる水溶性のルテニウム触媒や有機色素分子ではあまり反応が進行しません。そこで彼らは次なる触媒としてflavinを選定しました。flavinはα置換アセテートの脱炭酸反応を触媒することが知られていますが、二電子移動反応です。一電子移動反応には不向きであると直感的に思われますが、実はこれが良かったようです。

反応機構: フラビンがSETで触媒している

Limitationは?

気になる官能基許容性はというと、

LysとHis→酸性条件にすれば反応が進行する。

Tyr→低活性なflavin触媒を用いれば反応が進行しますが、やはり低収率です。Tyrは潜在的に酸化されやすいので致し方ないのですかね。

Cys、Met、Trp→これらを有するペプチド/タンパク質は論文中に出てきませんでした。Cysは今回の反応剤にマイケルアクセプターを用いているので難しそうです。MetやTrpはチオエーテルやインドールの酸化反応が優先的に進行してしまうのでしょうか。

上記以外のアミノ酸残基では良好に反応が進行するようですね。

インスリンの官能基化

本手法の応用として彼らはインスリンへの官能基化を試みています。

インスリンは二本のペプチド鎖(A-chain、B-chain)がジスルフィドで架橋された構造です。つまりC末端が二箇所あるタンパク質であり、またこの二本のペプチド鎖には4つのグルタミン酸残基を有しています。しかも本反応系では不得意であるチロシン残基も4つあるという、なんともチャレンジングなターゲットです。

しかし実際には彼らの手法を試してみると、A-chain優先的にC末端の官能基化が達成されました。もちろんジスルフィドも、グルタミン酸のカルボン酸も、他のヘテロ原子も保持されたままです。

インスリンへの応用(出典: Fig. 4)

 

B-chainではなくA-chain優先的に反応が進行する理由として彼らは二つの可能性について言及しています。

一つは単純にA-chainのC末端の方がB-chainのそれより酸化しやすいということ。もう一つは、A-chainのC末端近辺の疎水的な面に光触媒が局在し、近接効果でA-chainのC末端優先的に反応が進行するという可能性。どちらについても根拠は示されていないので推測の域は出ませんが、A-chainとB-chainで差が見られるのは非常に面白いですね。

おわりに

今回報告を含め、bioconjugation法で完璧なものは未だ存在しません。どのタンパク質の、どの部位に修飾したいのか、ということを考えて適切な方法を採用するというのが現状であり、そのため、新たなbioconjugation法の確立は未だ重要なトピックだと思います。

また今回の報告はbioconjugation法への応用でしたが、今後はbioorthogonal反応や、生細胞中でのnativeなタンパク質へのラベル化などに応用されていくのでしょうか?この先の展開も気になりますね。それでは今回はこの辺で。

参考文献

[1]Sato, S.; Nakamura, H. Angew. Chem., Int. Ed. 2013, 52, 8681. DOI:10.1002/anie.201303831

 

関連書籍

[amazonjs asin=”1561591610″ locale=”JP” title=”Bioconjugation: Protein Coupling Techniques for the Biomedical Sciences”] [amazonjs asin=”1617373540″ locale=”JP” title=”Bioconjugation Protocols: Strategies and Methods (Methods in Molecular Biology)”] [amazonjs asin=”1617791504″ locale=”JP” title=”Bioconjugation Protocols: Strategies and Methods (Methods in Molecular Biology)”]

関連リンク

 

Avatar photo

goatfish

投稿者の記事一覧

専門は有機化学です。有機合成と運動さえできればもう何もいりません。

関連記事

  1. 化学者のためのエレクトロニクス入門④ ~プリント基板業界で活躍す…
  2. 静電相互作用を駆動力とする典型元素触媒
  3. 非専門家でもデザインはできる!「ノンデザイナーズ・デザインブック…
  4. Dead Endを回避せよ!「全合成・極限からの一手」⑧
  5. 芳香族トリフラートからアリールラジカルを生成する
  6. 第29回 ケムステVシンポ「論文を書こう!そして…」…
  7. 【データケミカル】正社員採用情報
  8. NCL用ペプチド合成を簡便化する「MEGAリンカー法」

注目情報

ピックアップ記事

  1. 痔の薬のはなし after
  2. スナップ試薬 SnAP Reagent
  3. クネーフェナーゲル ピリジン合成 Knoevenagel Pyridine Synthesis
  4. ノバルティス、後発薬品世界最大手に・米独社を買収
  5. 株式会社ジーシーってどんな会社?
  6. 光延反応 Mitsunobu Reaction
  7. 再生医療ーChemical Times特集より
  8. 【書籍】化学探偵Mr.キュリー3
  9. 電解液中のイオンが電気化学反応の選択性を決定する
  10. コールドスプレーイオン化質量分析法 Cold Spray Ionization Mass Spectrometry (CSI-MS)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー