[スポンサーリンク]

化学者のつぶやき

光触媒を用いたC末端選択的な脱炭酸型bioconjugation

[スポンサーリンク]

光触媒を用いた反応開発で世界をリードしているMacMillan先生が今度はケミカルバイオロジー分野に参入か!?

Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials

Bloom, S.; Liu, C.; Kölmel, D.; Qiao, J.; Zhang, Y.; Poss, M.; Ewing, W.; MacMillan, D.

Nat. Chem. DOI: 10.1038/NCHEM.2888

反応開発の人が比較的取り組みやすい(と個人的に思っている)bioconjugationに自身の反応を応用しています。

bioconjugationとはなんぞや?と思われる方、大丈夫です、ケムステコンテンツはちゃんとそこまでフォローしてますよ!ということで詳細はこちらに説明を託して早速本文の紹介に進みたいと思います。

Bioconjugationに必要な条件とは

bioconjugationはペプチド/タンパク質を基質として用いる系なので、

  1. 反応は水系で行わなければならない。
  2. 一般的にタンパク質溶液は高濃度には調整できない(溶解しない)ため、低濃度でも反応が進行する必要がある。
  3. 温和な条件が必要。(タンパク質の3次構造を壊したくない)
  4. 高い選択性が必要。(様々な官能基が共存しているので)

なかなか厳しい条件ですが、MacMillanの反応はこれらを満たしているということですね。

水中での反応性と官能基選択性

今回の報告で彼らは光触媒を用いて脱炭酸を伴ったラジカルを発生させ、官能基化を行っています。高い反応性を有するラジカル反応が水中でタンパク質修飾に有用であることはこれまでの報告でもあるので(ラジカル反応制御を基盤とするタンパク質修飾法の開発[1]「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾)、本反応系がbioconjugationに用いることのできるというのは納得できます。

ラジカル反応を利用したBioconjugation

 

続いて選択性です。今回の報告はC末選択的な脱炭酸型官能基化です。

タンパク質の中にはC末端以外にもアスパラギン酸やグルタミン酸といった側鎖にカルボン酸を有するものが存在しうるにも関わらず、本反応ではむしろマイナーであるC末端のカルボン酸が選択的に反応します。そのカラクリはラジカルの生成のしやすさです。C末端のカルボン酸は脱炭酸後に生成するラジカルは隣にヘテロ原子(窒素)が存在するため、アスパラギン酸やグルタミン酸の側鎖から生成するラジカル種より安定です。これがC末選択的に反応が進行する所以です。

反応の選択性:側鎖のカルボン酸 vs C末端のカルボン酸(出典: Fig. 1を改変)

光触媒の検討

さて、C末選択的に脱炭酸的な官能基化が進行しそうなことはわかりました。ということは、後は、MacMillanらがこれまで報告している反応条件で試せば終わり!と思うのですが、そうは問屋はおろしません。

本反応系で一般的に用いられる水溶性のルテニウム触媒や有機色素分子ではあまり反応が進行しません。そこで彼らは次なる触媒としてflavinを選定しました。flavinはα置換アセテートの脱炭酸反応を触媒することが知られていますが、二電子移動反応です。一電子移動反応には不向きであると直感的に思われますが、実はこれが良かったようです。

反応機構: フラビンがSETで触媒している

Limitationは?

気になる官能基許容性はというと、

LysとHis→酸性条件にすれば反応が進行する。

Tyr→低活性なflavin触媒を用いれば反応が進行しますが、やはり低収率です。Tyrは潜在的に酸化されやすいので致し方ないのですかね。

Cys、Met、Trp→これらを有するペプチド/タンパク質は論文中に出てきませんでした。Cysは今回の反応剤にマイケルアクセプターを用いているので難しそうです。MetやTrpはチオエーテルやインドールの酸化反応が優先的に進行してしまうのでしょうか。

上記以外のアミノ酸残基では良好に反応が進行するようですね。

インスリンの官能基化

本手法の応用として彼らはインスリンへの官能基化を試みています。

インスリンは二本のペプチド鎖(A-chain、B-chain)がジスルフィドで架橋された構造です。つまりC末端が二箇所あるタンパク質であり、またこの二本のペプチド鎖には4つのグルタミン酸残基を有しています。しかも本反応系では不得意であるチロシン残基も4つあるという、なんともチャレンジングなターゲットです。

しかし実際には彼らの手法を試してみると、A-chain優先的にC末端の官能基化が達成されました。もちろんジスルフィドも、グルタミン酸のカルボン酸も、他のヘテロ原子も保持されたままです。

インスリンへの応用(出典: Fig. 4)

 

B-chainではなくA-chain優先的に反応が進行する理由として彼らは二つの可能性について言及しています。

一つは単純にA-chainのC末端の方がB-chainのそれより酸化しやすいということ。もう一つは、A-chainのC末端近辺の疎水的な面に光触媒が局在し、近接効果でA-chainのC末端優先的に反応が進行するという可能性。どちらについても根拠は示されていないので推測の域は出ませんが、A-chainとB-chainで差が見られるのは非常に面白いですね。

おわりに

今回報告を含め、bioconjugation法で完璧なものは未だ存在しません。どのタンパク質の、どの部位に修飾したいのか、ということを考えて適切な方法を採用するというのが現状であり、そのため、新たなbioconjugation法の確立は未だ重要なトピックだと思います。

また今回の報告はbioconjugation法への応用でしたが、今後はbioorthogonal反応や、生細胞中でのnativeなタンパク質へのラベル化などに応用されていくのでしょうか?この先の展開も気になりますね。それでは今回はこの辺で。

参考文献

[1]Sato, S.; Nakamura, H. Angew. Chem., Int. Ed. 2013, 52, 8681. DOI:10.1002/anie.201303831

 

関連書籍

[amazonjs asin=”1561591610″ locale=”JP” title=”Bioconjugation: Protein Coupling Techniques for the Biomedical Sciences”] [amazonjs asin=”1617373540″ locale=”JP” title=”Bioconjugation Protocols: Strategies and Methods (Methods in Molecular Biology)”] [amazonjs asin=”1617791504″ locale=”JP” title=”Bioconjugation Protocols: Strategies and Methods (Methods in Molecular Biology)”]

関連リンク

 

Avatar photo

goatfish

投稿者の記事一覧

専門は有機化学です。有機合成と運動さえできればもう何もいりません。

関連記事

  1. 室温以上で金属化する高伝導オリゴマー型有機伝導体を開発 ―電子機…
  2. 配位子だけじゃない!触媒になるホスフィン
  3. 文具に凝るといふことを化学者もしてみむとてするなり⑭: 液タブ …
  4. 耐薬品性デジタルマノメーター:バキューブランド VACUU・VI…
  5. 1と2の中間のハナシ
  6. 巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生さ…
  7. 超分子化学と機能性材料に関する国際シンポジウム2018
  8. 有機合成化学協会誌2020年7月号:APEX反応・テトラアザ[8…

注目情報

ピックアップ記事

  1. 化学者も参戦!?急成長ワクチン業界
  2. ヒスチジン近傍選択的なタンパク質主鎖修飾法
  3. 第3のエネルギー伝達手段(MTT)により化学プラントのデザインを革新する
  4. 「優れた研究テーマ」はどう選ぶべき?
  5. アルキンから環状ポリマーをつくる
  6. 今さら聞けないカラムクロマト
  7. いま企業がアカデミア出身者に期待していること
  8. 2007年秋の褒章
  9. 化学者のためのエレクトロニクス講座~無電解卑金属めっきの各論編~
  10. 反応経路自動探索が見いだした新規3成分複素環構築法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー