[スポンサーリンク]

化学者のつぶやき

可視光照射でトリメチルロックを駆動する

[スポンサーリンク]

カリフォルニア工科大学・Dennis A. Doughertyらは、光照射で脱保護されるアミン or アルコールの保護基「キノントリメチルロック」を開発した。置換基(Y)を変更することで400-600 nmの長波長光で駆動可能。副生物は吸光性を示さない。続報にて詳細な機構解析も報告している。

① “A General Strategy for Visible-Light Decaging Based on the Quinone Trimethyl Lock”
Walton, D. P.; Dougherty, D. A.* J. Am. Chem. Soc. 2017, 139, 4655−4658. DOI: 10.1021/jacs.7b01548
② “Mechanistic Studies of the Photoinduced Quinone Trimethyl Lock Decaging Process”
Regan, C. J.; Walton, D. P.; Shafaat, O. S.; Dougherty, D. A.* J. Am. Chem. Soc. 2017, 139, 4729-4736. DOI: 10.1021/jacs.6b12007

問題設定

トリメチルロック[1]は様々に誘導化可能な保護基として幅広い応用に用いられてきた。しかしながら光化学的にトリメチルロックを駆動する目的にはUVの使用(ニトロベンジル保護体を用いるなど)が前提されていた。長波長光で駆動される分子は、生体組織浸透性などもろもろの文脈から魅力があるが、金属フリーで長波長吸収(>450nm)をもつ保護基はそもそもバリエーションが少ない[2]。

技術や手法の肝

Doughertyらは、光誘起型電子移動を介して、キノン構造をヒドロキノンへと還元し、トリメチルロックを駆動させることを考えた。キノン型トリメチルロックをチオ硫酸ナトリウムなどで還元して熱的に駆動するコンセプトは既知である。またキノンをアミンやスルフィドで光還元できることも既知である[3]。しかしながら両者を組み合わせて可視光駆動型トリメチルロックに仕立てた先例は存在しない。

主張の有効性検証

①化合物の設計と合成

ブロモキノンカルボン酸中間体に対してアミン・スルフィドを合成終盤で付加させて、様々なキノントリメチルロックを合成した。水溶性をあげる目的で、糖をつけておくこともできる。合成されたものはいずれも可視光吸収を持つ。

②光駆動性の実証

スルフィド型は455nm LED照射にて綺麗に切断され、アルコールが定量的に放出される。アミン型はより長波長に吸収を持つため、565nm LEDを使う。こちらは非極性溶媒中でも実施可能。いずれもSまたはN原子に隣接する活性C-Hを切りながら反応が進行する(Norrish Type II反応)ので、ここのBDEが低いものほど反応が速くなる(ベンジル置換 >アルキル置換)。

放出されるXの部分としてアルコールの代わりにアミンも活用可能。クマリン(λex=355 nm)を用いて蛍光モニタリングしたり、GABAを放出させてアフリカツメガエル(Xenopus oocytes)の細胞を駆動させたりもしている。また、スルフィド型が長波長吸収を持たないことを利用し、アミン型だけを長波長光で選択的に駆動させることにも成功している。

③メカニズム解析

スルフィド型キノントリメチルロックを用いて詳細な反応機構解析がなされている。多数の実験事実を元にした綿密な考察が行なわれているが、ここでは詳細は割愛し、結論だけを要約したい。

【1】律速段階について

おおまなか機構はこれまでに再三示しているとおりである。つまり、光誘起電子移動が起きた後にC-H切断が起こり、zwitterionic中間体が生じる。これがフェノール酸素や溶媒にトラップされ、トリメチルロックが駆動してdecagingが進行する。このトリメチルロック環化過程がもっとも遅いステップである。しばしば環化前のヒドロキノン体が単離されることからこれは支持される。

【2】中間体構造について

「Ionic pathwayを経由するのか、radicalic pathwayを経るのか」が主たる議論の的になっている。結論としては、ionic pathway経由で、zwitterionを与えるスキーム上部の経路が最もあり得るメカニズムと判断されている。詳しい議論は冒頭論文②を参照されたい。

議論すべき点

  • トリメチルロック部位と光学的に干渉してしまうような光駆動性分子でも、放出対象として使用可能かは気になる。今回の系では波長が被らないクマリンで実証実験を行なっている。
  • 硫黄・アミン部に様々な機能部位(溶解性向上・膜透過性向上・生態分布制御など)を持たせることが可能なのは利点。

未解決問題へのアプローチ

  • 次なる目標は近赤外レベルの長波長駆動だと思われる。組織深部に到達する光には650-1300 nmが必要と言われている(血中ヘム、水、脂質、メラニンいずれにも吸収されない波長帯)[4]。π系拡張によるStokes Shiftはもっとも簡単に行える設計だが、応じて溶解性や生体適合性の低下が問題になりがちである。Si, B, Pの導入などでπ系を伸長させず長波長化を達成する最近の設計トレンドは参考にできるか。

参考文献

  1. Review: Levine, M. N.; Raines, R. T. Chem. Sci. 2012, 3, 2412. doi:10.1039/C2SC20536J
  2. Review for photoremovable PGs: (a) Klán, P.; Šolome, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Chem. Rev. 2013, 113, 119. DOI: 10.1021/cr300177k (b) Hansen, M. J.; Velema, W. A.; Lerch, M. M.; Szymanski, W.; Feringa, B. L. Chem. Soc. Rev. 2015, 44, 3358.  doi:10.1039/C5CS00118H
  3. 冒頭論文①、ref30-44
  4. Near-infrared window in biological tissue – Wikipedia

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. MEDCHEM NEWS 32-4 号「創薬の将来ビジョン」
  2. 武装抗体―化学者が貢献できるポイントとは?
  3. 新たな特殊ペプチド合成を切り拓く「コドンボックスの人工分割」
  4. 保護基の使用を最小限に抑えたペプチド伸長反応の開発
  5. 触媒でヒドロチオ化反応の位置選択性を制御する
  6. 「関東化学」ってどんな会社?
  7. 【追悼企画】化学と生物で活躍できる化学者ーCarlos Barb…
  8. メルクがケムステVシンポに協賛しました

注目情報

ピックアップ記事

  1. 高分子と高分子の反応も冷やして加速する
  2. 生物発光のスイッチ制御でイメージング
  3. 人工DNAから医薬をつくる!
  4. 薄くて巻ける有機ELディスプレー・京大など開発
  5. 二量化の壁を超えろ!β-アミノアルコール合成
  6. 第四回ケムステVシンポ「持続可能社会をつくるバイオプラスチック」開催報告
  7. ゴキブリをバイオ燃料電池、そしてセンサーに
  8. グレッグ・ウィンター Gregory P. Winter
  9. Chemical Science誌 創刊!
  10. 永田試薬 Nagata Reagent

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP