[スポンサーリンク]

化学者のつぶやき

DNAを人工的につくる-生体内での転写・翻訳に成功!

[スポンサーリンク]

スクリプス研究所のFloyd E. Romesberg教授らは、人工塩基対X-Yを含むDNAを細胞内に持ち、このDNAを複製かつ転写・翻訳できる大腸菌を作製することに成功しました。

“A semi-synthetic organism that stores and retrieves increased genetic information”

Zhang, Y.; Ptacin, J. L.; Fischer, E. C.; Aerni, H. R.; Caffaro, C. E.; San Jose, K.; Feldman, A. W.; Turner, C. R.; Romesberg, F. E. Nature 2017, 551, 644. DOI:10.1038/nature24659

1. 人工塩基対による遺伝暗号の拡張

天然のDNAは、A(アデニン)・T(チミン)・G(グアニン)・C(シトシン)という4つの塩基からできています。DNAからmRNAを経てタンパクを作る際には、3つの塩基(コドン)がその配列に合わせて1つのアミノ酸へと置き換えられます(図1;翻訳)。この仕組みによって、生命の設計図であるDNAの遺伝情報が、最終産物のタンパクへと反映されるようになっています。

“DNAの塩基対を、人工的に合成することは可能か?

これは、生命システムを人の手でデザインすることを目指す合成生物学における、大きな課題です。もし、DNAにA・T・G・C以外の新しい塩基を加えることができれば、現状で43(=64)通りあるコドンの種類を増やすことができ、新しいコドンに非天然のアミノ酸を対応させられるようになります(図1a;*)。自然界では、コドンとアミノ酸の対応関係はコドン表(図1b)に従いますが、人工塩基の導入によってこの表を拡張し、さらに多様な化学構造をもつアミノ酸をタンパクに組み込む、というのが一つの目標です。

図1. (a) 人工塩基対X–Yを持つDNAからの転写・翻訳。天然にはないAXCコドンに対して、非天然アミノ酸(*)を対応させられる。(b) コドン表。

これまでにRomesberg教授らは、A–T、G–CのようにDNA二重螺旋構造内で安定的に塩基対を形成する分子を開発し、その人工塩基対を含むプラスミドDNAを大腸菌内で複製させることに成功していました。[1] ケムステでも以前取り上げられているように、かなり注目されています。(人工DNAを複製可能な生物ができた!2014年化学10大ニュース

前回のNature論文から約3年半、Romesberg教授らはさらに、この人工塩基対を含むDNAから転写・翻訳を行える大腸菌を作製することに成功しました(図2)。

図2. セントラルドグマと今回の研究の位置付け。

2. 人工塩基対を持つ生物の合成

図3. 人工塩基対を利用する半合成生物の仕組み。

図3のように、人工塩基対を生物のシステムに組み込むには、様々なステップが必要です。

  1. 人工塩基の取り込み:人工塩基X・Yのヌクレオシド三リン酸を細胞内に取り込むため、細胞上に輸送体タンパク(NTT)を発現する。
  2. 複製:取り込まれた人工塩基が大腸菌内のDNAポリメラーゼに利用され、DNA複製が起こる。
  3. 転写:取り込まれた人工塩基が、DNAの転写においてRNAポリメラーゼに利用され、mRNAやtRNAに組み入れられる。
  4. アミノアシル化:人工塩基を持つtRNAがアミノアシルtRNA合成酵素の働きにより、アミノ酸と結合してaa-tRNAとなる。
  5. aa–tRNAがリボソーム上で翻訳に利用され、アミノ酸はタンパクに組み入れられる。

上記の太字部分は各ステップで重要な役割を果たす物質です。人工塩基対がこれらの分子とうまく相互作用し、塩基配列に対応するアミノ酸を目的タンパクに組み込めるようなシステムを作らなければなりません。

彼らが今回用いた人工塩基は、疎水性相互作用を利用したNaM(X)とTPT(Y)のペアです。これまでの研究で、Romesberg教授らは、大腸菌の細胞表面に輸送体タンパク(NTT)を発現し、三リン酸化された状態の人工塩基(dXTP, dYTP)を細胞内に取り込むことに成功していました(ステップ1)。[1,2] 取り込まれた塩基は、大腸菌内に元々存在するDNAポリメラーゼによって利用され、予め導入しておいた人工塩基を含むプラスミドDNAを複製します(ステップ2)。今回の論文では、リボース型の人工塩基(XTP, YTP)も、培地に加えておくとNTTによって細胞内に取り込まれ、RNAポリメラーゼ(T7 RNAP)によって転写に利用されることが確認されました(ステップ3)。

それでは、このようにして得られた人工塩基を含むmRNAやtRNAを用いて、実際にタンパクを合成することは可能でしょうか。Romesberg教授らは、人工塩基を含むAXC(またはGXC)コドンに対して、非天然アミノ酸(PrK)を対応させ、目的タンパクであるGFPに組み込むことに挑戦しました。彼らはまず、GFPの遺伝子とtRNAの配列をもつプラスミドDNAを試験官内で合成し、大腸菌に導入しました(図4a)。GFP遺伝子には、AXCコドン、tRNAにはそれに対応するアンチコドンGYTが含まれています。彼らはさらに、大腸菌内でアミノアシルtRNA合成酵素(PylRS)を発現させ、人工塩基Yを含むtRNAと非天然アミノ酸PrKを結合させました(図3;ステップ4、図4b)。こうして作製されたPrK-tRNAは、リボソームでの翻訳にうまく利用され、最終的にPrKを目的タンパクGFPに組み込むことができました(図3;ステップ5、図4c)。

図4. 人工塩基対を含むプラスミドDNAからのタンパク合成。

彼らは、PrKの導入をGFPの蛍光測定によって確認しました(図5)。ここでは、人工塩基を含むAXC, GXCコドン以外に、TAC, TAGコドンを用いた場合のデータも比較として示されています。TACコドンは、天然アミノ酸のチロシン(Tyr)に対応するコドン、TAGコドンはPylRSの働きによりPrKを導入できることが知られているコドンです(終止コドンの一つ)。図5において、TACコドンは天然アミノ酸に対応しているため、非天然アミノ酸PrKの有無に関わらず蛍光が確認されています。一方で、終止コドン(TAG)や人工塩基を含むコドン(AXC, GXC)の場合は、PrKの非存在下では蛍光がほとんど観測されていません。これは、培地中にPrKが無ければ目的コドンにアミノ酸が組み込まれず、GFPがうまく発現されないからだと考えられます。この結果から、目的コドンに非天然アミノ酸PrKが導入されていることが示唆されます。

図5. 大腸菌培養培地の蛍光強度変化。+/−は培地中のPrKの有無を示す。

さらに彼らは、精製したGFPの質量分析によって、PrKの導入を直接的に示しています(図6)。グラフから、AXCコドンでは96.2%、GXCコドンでは97.5%の割合でPrKが導入されたことが分かります。しかし残念ながら、TAGコドンを用いた場合ほどの純度は得られていません。彼らは、PrK以外の天然アミノ酸が組み込まれてしまう主な原因は、DNA複製時に人工塩基Xが天然塩基T(チミン)に置き換わってしまうからだと考えています。ATCはイソロイシン(I)、GTCはバリン(V)に対応しているので、この考えと一致します。

図6. 質量分析による目的コドンへの各アミノ酸の導入率。(論文より)

また、論文中ではPrK以外の非天然アミノ酸の導入も行われています。対象として用いられたのはp-位にアジド基をもつフェニルアラニン(pAzF)で、ここでは異なる種類のアミノアシルtRNA合成酵素(MjTyrRS)が用いられています。ウエスタンブロットの結果から、純度93%でpAzFを含むGFPが得られることが分かりました。このことから、様々なアミノ酸や合成酵素に対して、普遍的に人工塩基を利用できると考えられます。

3. おわりに

人工塩基対の研究は、Steven Benner教授、平尾一郎教授、そして今回の論文の著者であるFloyd Romesberg教授らグループを中心に、長年取り組まれています。それぞれのグループが改良を重ね、試験官内で精度良く複製・転写できる人工塩基対の開発に成功していましたが、それらを細胞内の転写・翻訳システムに組み込むことは達成されていませんでした。大腸菌内で人工塩基対を利用して非天然アミノ酸を導入できることを示した今回の研究は、この分野における大きな進歩です。

実用的な観点から考えると、非天然アミノ酸の導入に関しては、既存の手法にまだまだ敵いません。特に、TAG終止コドンを用いた手法と比較すると、タンパクの収量や生成物の純度、必要な非天然アミノ酸濃度、システムの簡略さ、などについて改善が必要です。生成物の純度に関しては、DNAの複製ミスにより人工塩基が天然塩基に置き換わってしまうことが一因だと考えられているので、今後複製の精度が改善されることが望まれます。ちなみに自然のシステムでは、一回のDNA複製において1塩基あたり10-10程度の確率でしか変異が起こりません。[3] 見方を変えれば、これほどに洗練された生体システムに人工塩基を導入し、DNA複製やタンパク合成を達成したRomesberg教授らの研究はかなりの偉業です。今後の更なる進展が期待されます。

参考文献

  1. Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385. DOI: 10.1038/nature13314
  2. Zhang, Y.; Lamb, B. M.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. Proc. Natl Acad. Sci. USA 2017, 114, 1317.
DOI: 10.1073/pnas.1616443114
  3. Schaaper, R. M. J. Biol. Chem. 1993, 268, 23762.

関連リンク

関連書籍

[amazonjs asin=”4061543156″ locale=”JP” title=”ゲノムケミストリー―人工核酸を活用する化学的アプローチ”] [amazonjs asin=”4062575825″ locale=”JP” title=”DVD&図解 見てわかるDNAのしくみ (ブルーバックス)”]

 

Avatar photo

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. 条件最適化向けマテリアルズ・インフォマティクスSaaS : mi…
  2. 非対称化合成戦略:レセルピン合成
  3. 第19回ケムステVシンポ「化学者だって起業するっつーの」を開催し…
  4. 一人二役のフタルイミドが位置までも制御する
  5. クリーンなラジカル反応で官能基化する
  6. 嘘か真かヒトも重水素化合物をかぎわける
  7. 神秘的な海の魅力的アルカロイド
  8. ベンゼンの直接アルキル化

注目情報

ピックアップ記事

  1. クラリベイト・アナリティクスが「引用栄誉賞2017」を発表
  2. 化学に触れる学びのトレイン“愛称”募集
  3. 化学系プレプリントサーバ「ChemRxiv」の設立が決定
  4. 化学者のためのエレクトロニクス講座~無電解めっきの還元剤編~
  5. 佐藤しのぶ ShinobuSato
  6. 有機合成化学協会誌2020年5月号:特集号 ニューモダリティ;有機合成化学の新しい可能性
  7. 昇華の反対は?
  8. ペンタフルベンが環構築の立役者!Bipolarolide D の全合成
  9. ヘロナミドA Heronamide A
  10. 取扱いが容易なトリフルオロアセチル化試薬

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー