[スポンサーリンク]

化学者のつぶやき

イナミドを縮合剤とする新規アミド形成法

[スポンサーリンク]

2016年、江西師範大学のJunfeng Zhaoらは、イナミドを縮合剤として用いることで、一切の添加剤を必要とせず、ラセミ化フリーでペプチドを合成することに成功した。単純なアミドやジペプチドの合成だけでなく、ペプチドのセグメント縮合にも応用できる。

“Ynamides as Racemization-Free Coupling Reagents for Amide and Peptide Synthesis”
Long, H.; Silin, X.; Zhenguang, Z.; Yang, Y.; Zhiyuan, P.; Ming, Y.; Changliu, W.; Junfeng, Z.* J. Am. Chem. Soc. 2016, 138, 13135–13138. DOI: 10.1021/jacs.6b07230

問題設定

アミド結合の形成には、カルボン酸を活性化させる形での縮合剤が多く使用されている。しかし、これらの縮合剤を用いる場合、試薬自身や添加剤などに由来する多量の廃棄物が生じるため、原子効率に優れる反応剤が求められている。
イナミンは、高収率・添加剤不要でペプチドを合成できる縮合剤として1964年に報告されていた[1]。しかし、イナミンは熱に不安定で水とも反応し、さらにラセミ化も引き起こしやすいため実用的な縮合剤では無かった[2]。

技術や手法のキモ

イナミンの窒素置換基を電子求引基に変えたイナミドを用いることが鍵であった。本化合物は熱的に安定で、かつ水中でも反応に使用できる。また、電子求引基導入の結果として塩基性も低下しており、ラセミ化を抑制する効果もある。
今回の研究ではMYMsA、MYTsAを最適試薬として見いだしている。2工程の合成法にていずれも簡便に合成できる。

主張の有効性検証

①既存の縮合剤との比較

MYMsA, MYTsAのどちらを使用した場合でも、既存の縮合剤を使用した場合に比べ高収率で反応が進行した。かつ一切のラセミ化が見られていない。

②基質一般性

N末の保護基としてはBoc, Cbz, Fmocのいずれも適用可能である。アミノ酸側鎖に-OH,-SH,-CONH2,NHが含まれていても選択的に反応するため、側鎖の保護は必要ない。ValやAibといった立体障害が大きい基質でも、反応時間を長くすることで高い収率が得られているほか、大スケール(20 mmol)でも収率にはほぼ影響がない。ペプチドのフラグメント縮合にも応用できる。

③反応機構について

脂肪族・芳香族、不飽和カルボン酸に対してMYTsAを混合すると、室温で数時間以内に、高収率で対応するα-アシロキシイナミドが得られる。これらのα-アシロキシイナミドは全て室温で安定に存在した。また、強酸(TfOH)を触媒として加えると反応時間が2.4倍短縮されたという報告[3]がある。
これらの事実をもとに、α-アシロキシイナミド生成・ペプチド結合生成それぞれの段階について、反応機構解析が他研究者によって行われている(下図)[4]。
まずイナミドのプロトン化が起こりイミニウム種が生じ、カルボン酸が生じることでα-アシロキシイナミドが生成する。これがさらにもう一分子のカルボン酸と絡むことでアミド形成反応が進行し、副生成物としてスルホニルイミドが生じる。

論文[4]より引用

議論すべき点

  • AibやValなどの、立体障害の大きい基質でも高い収率を得られている点は特筆すべきだろう。
  • one-potかつ大スケールで反応を行えるため、大量合成にも応用可能。しかし、反応時間が長いのが欠点。
  • 5残基のペプチドであるLeu-Enkephalinの合成を行う場合、数日かかり、収率も70%まで落ちている。ラセミ化リスクを懸念してか活性化箇所をグリシンにしていることも注意点。他の基質をフラグメントカップリングに利用する場合、どれほどラセミ化するかは未知数。

参考文献

  1. Buijle, R.; Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1964, 3, 582. DOI: 10.1002/anie.196405822
  2. Weygand, F.; König, W.; Buyle, R.;Viehe, H. G. Chem. Ber. 1965, 98, 3632. DOI: 10.1002/cber.19650981130
  3. Hu, L.; Zhao, J. Synlett 2017, 28, 1663. DOI: 10.1055/s-0036-1588860
  4. Zhang, S.; Xing, H.; Deng, Z. Org. Biomol. Chem. 2017, 15, 6367. doi:10.1039/C7OB01378G
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!②
  2. カチオン性三核Pd触媒でC–I結合選択的にカップリングする
  3. ケムステイブニングミキサー2019ー報告
  4. 文具に凝るといふことを化学者もしてみむとてするなり⑱:Apple…
  5. そこのB2N3、不対電子いらない?
  6. モリブデンのチカラでニトロ化合物から二級アミンをつくる
  7. 今年は Carl Bosch 生誕 150周年です
  8. データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3…

注目情報

ピックアップ記事

  1. フローケミストリーーChemical Times特集より
  2. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?
  3. Evonikとはどんな会社?
  4. 高分子と低分子の間にある壁 1:分子量分布
  5. ロッセン転位 Lossen Rearrangement
  6. 研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-
  7. 有機・高分子合成における脱”レアメタル”触媒の開発動向
  8. 乳化剤の基礎とエマルション状態の評価【終了】
  9. Cooking for Geeks 第2版 ――料理の科学と実践レシピ
  10. 地球温暖化が食物連鎖に影響 – 生態化学量論の視点から

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー