[スポンサーリンク]

化学者のつぶやき

カーボンナノベルト合成初成功の舞台裏 (2)

[スポンサーリンク]

前回 カーボンナノベルト合成初成功の舞台裏 (1) の続きです。

“After 60 Years of Efforts: The Chemical Synthesis of a Carbon Nanobelt” というレビュー記事には、過去60年に亙るカーボンナノベルト合成の挑戦と失敗について詳細が綴られています。実際、伊丹グループでのカーボンナノベルト合成の旅路も、決して順風満帆なものではありませんでした。

伊丹グループがなぜカーボンナノベルトの合成を始めたのかは、前回の記事でも述べました。Cycloparaphenylene(CPP)やカーボンナノベルトは、どちらもカーボンナノチューブの最小構成の「積み木」となるからです。これらのような環状の分子で膜が作れるようになることは、カーボンナノチューブ合成への有望な選択肢なのです。

2013年、伊丹グループのOmachiらは、上記CVD法により、一定の直径であるCPPから、高効率でカーボンナノチューブの合成を達成しました(もちろん、収率は100%ではないので注意が必要です)。詳しくは、次の論文に載っています。“Initiation of carbon nanotube growth by well-defined carbon nanorings.”

このことは多くの注目を集め、CHEMISTRY WORLDにも取り上げられました。同じCPP合成の先駆者であるRamesh Jastiの言葉を引用すると “This is the promising result many of us have been waiting for…” 「これこそまさに我々が待ち望んでいた有望な結果だ…」とのことです。

然しながら、その文献の手法は限界があるということが後々わかることになります。

その方法ではある一定サイズのCPPを用いてカーボンナノチューブを作ろうと試みるわけですが、最終的に「直径とキラルが一定のカーボンナノチューブ」が合成されることはなく、「直径やキラルがバラバラのカーボンナノチューブの混合物」が合成されてしまったのです。

例えば上の図のように、[12]CPPを用いて合成を行おうとすると、下に並んだような直径が1.2nmから1.7nmに基づいたカーボン・ナノチューブが合成されてしまったのです。これはつまり、高温での反応中に、CPP分子のベンゼン環間の炭素炭素結合が壊れてしまったことに由ります。この副反応は、まるでプログラム内でコピーする際のエラーのようで、予測することもコントロールすることも難しい副産物を生み出してしまいます。故に、過酷な条件下でも耐えられるような、そのようなカーボンナノベルトを作ることが必要であると、我々は思い直すようになりました。

そのような中、伊丹グループはCPP合成を最適化する過程で、カーボンナノベルト合成において有望な、一連のCPP誘導体による方法を開発しました。例として、下の2つが挙げられます。

  1. ナフタレン系化合物を用いた合成により、カーボンナノベルトやカーボンナノチューブの前駆体として有望な[9]-CNを得る方法(下図)

2. Cl置換したCPPによるカップリング反応を用いてカーボンナノベルトを合成する方法(下図)

しかし残念ながら、これまでの所、上記2つの研究論文に続く進展は見られず、このCPP誘導体による目的達成は非常に困難となりました。[9]CNからであっても、CPP二量体からであっても、非常に高効率な脱水素カップリングによる合成を必要とし、分子内に形成される炭素炭素結合は環ひずみや立体障害に耐える必要があります。これらもまたCPP誘導体によるカーボンナノベルト合成におけるボトルネックとなっており、有効な解決方法は見つかりませんでした。

そんな時、彼らは新たな方法を思いつきます。Marcin Stępieńの2つの論文におけるYamamotoホモカップリングにより芳香環のリングを形成しましたが(注意:これは置換された原子を含むのでカーボンナノベルトではありません)、その手法から発想を得て、Guillaumeは再度、ブロモスチルベンによるYamamotoホモカップリングからカーボンナノベルトを合成することに成功するのです。(下図)この方法について、詳しく見ていきましょう。

この合成において必要な、全てシス型のブロモスチレンは、2002年にGilheanyらが報告したZ-選択的Wittig反応を用いて準備されました。(下図)この反応中、オルト位のアルデヒドやホスホラスイリドが反応剤となり、高効率でZ-選択的なジブロモスチルベン、(Z)-1,2-bis(2-bromolphenyl)etheneを得ることが出来ます。

この反応の高い選択性の理由は、ハロゲン元素が下図cis-OPA(a)やtrans-OPA(b)中間体に対して及ぼす安定性への影響から理解する事ができます。

もしベンズアルデヒドのオルト位にハロゲン元素が有る場合、ハロゲン元素XとPの弱い配位によりcis-OPAの安定性が増加します。もしベンジルホスホニウム塩のオルト位にハロゲン元素が有る場合、trans-OPA中間体のArとトリフェニルホスフィンのフェニル基との間での立体障害により、trans-OPAの安定性が低下します。結果的に、中間体としてcis-OPAが優勢となり、Z型の生成物が選択的に合成されることになります。(より詳しくは2002年のTetrahedron Letterを参照して下さい。

これらこそまさにカーボンナノベルト合成におけるキーとなる反応であり、ついにその合成に成功することになります。さてそれでは、Guillaume氏による、具体的な合成経路を見ていきましょう。

反応はパラキシレンから出発し、ハロゲン化反応により化合物S1をつくりました。ナトリウムメトキシドによる処理を用い、片側の2つのBr基をメトキシ基に置換しアセタール化合物S2を合成しました。その後、S2のもう片側のBrを1つ脱離させ化合物3を、S2を酸性条件下で脱保護しアルデヒド4を得ました。

34の間で、上述したZ-選択的Wittig反応を進行させ、Z/E = 20:1の高い割合でZ型のスチルベン5を得ました。そのまま分離精製を挟むことなく直接、上述の反応を2回行うことで化合物8へと導きました。その後、カリウムtert-ブトキシド存在下で、2つの化合物8の分子間Wittig反応を行い、化合物2(カーボンナノベルト前駆体)の合成に成功しました。

(注意深い読者の皆さんは已にお気づきかもしれませんが、全ての反応はとても短い時間で完了させるべきものであり、全てのステップでも10分程度から長くても3時間程度の時間を必要とする程度のものになります。この理由は、全てのZ型オレフィン中間体はどれも熱力学的に安定な化合物ではなく、特に光を避ける必要があり、決して長い間外界に晒してはいけないです。シストランス異性化が進めば進むほど、E型の副産物が増えてしまいます。できるだけ早く各ステップの反応を速め、可能な限り早く前駆物質に変換できるようにする必要があります。

(続く)

Chem Station 中国語版からの翻訳・加筆記事です。

原文: 首次合成碳纳米带–背后的故事(二) by JiaoJiao

 

Avatar photo

Eine

投稿者の記事一覧

音楽ゲームが好き。ナノメートルの世界で分子や電子の気持ちを考える日々

関連記事

  1. ナノってなんナノ?~日本発の極小材料を集めてみました~
  2. コバルト触媒でアリル位C(sp3)–H結合を切断し二酸化炭素を組…
  3. アメリカ大学院留学:研究者キャリアとライフイベント
  4. タミフルの新規合成法・その3
  5. 有機合成化学協会誌2022年9月号:π-アリルパラジウム・ポリエ…
  6. 研究者×Sigma-Aldrichコラボ試薬 のポータルサイト
  7. 複雑天然物Communesinの新規類縁体、遺伝子破壊実験により…
  8. ベンジル位アセタールを選択的に酸素酸化する不均一系触媒

注目情報

ピックアップ記事

  1. 秋の褒章2009 -化学-
  2. 生合成を模倣した有機合成
  3. 有機合成化学協会誌2021年1月号:コロナウイルス・脱ニトロ型カップリング・炭素環・ヘテロ環合成法・環状γ-ケトエステル・サキシトキシン
  4. 遷移金属触媒がいらないC–Nクロスカップリング反応
  5. まっすぐなペプチドがつまらないなら「さあ輪になって踊ろ!」
  6. Ni(0)/SPoxIm錯体を利用した室温におけるCOの可逆的化学吸着反応
  7. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ②
  8. グルタミン酸 / Glutamic Acid
  9. クマリンを用いたプロペラ状π共役系発光色素の開発
  10. プリンターで印刷できる、電波を操る人工スーパー材料

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP